Skip to main content

Bleaching Resistance and the Role of Algal Endosymbionts

  • Chapter
Coral Bleaching

Part of the book series: Ecological Studies ((ECOLSTUD,volume 205))

Abstract

Corals form an obligate symbiosis with a wide range of genetic types within the genus Symbiodinium, a genetically extremely diverse group of single-celled algae. In this chapter we review global patterns in the distribution of Symbiodinium diversity, variability in the levels of specificity of the coral--algal symbiosis among corals with differing life histories, temporal change versus stability in the Symbiodinium community harboured by corals, particularly following bleaching events, and the extent to which Symbiodinium type defines physiological attributes of the coral holobiont. We further discuss evidence for shuffling versus switching under thermal stress and how coral--algal symbioses are likely to respond to ocean warming associated with climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc Lond B doi:10.1098/rspb.2008.0180

    Google Scholar 

  • Babcock RC, Heyward AJ (1986) Larval development of certain gamete-spawning scleractinian corals. Coral Reefs 5:111–116

    Google Scholar 

  • Baillie BK, Belda-Baillie CA, Maruyama T (2000a) Conspecificity and Indo-Pacific distribution ofSymbiodiniumgenotypes (Dinophyceae) from giant clams. J Phycol 36:1153–1161

    CAS  Google Scholar 

  • Baillie BK, Belda-Baillie CA, Silvestre V, Sison M, Gomez AV, Gomez ED, Monje V (2000b) Genetic variation inSymbiodiniumisolates from giant clams based on random-amplified-polymorphic DNA (RAPD) patterns. Mar Biol 136:829–836

    CAS  Google Scholar 

  • Baker AC (1999) The symbiosis ecology of reef-building corals. PhD thesis, University of Miami, Miami

    Google Scholar 

  • Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766

    PubMed  CAS  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral—algal symbiosis: diversity, ecology and biogeography ofSymbiodinium. Annu Rev Ecol Syst 34:661–689

    Google Scholar 

  • Baker AC, Rowan R (1997) Diversity of symbiotic dinoflagellates (zooxanthellae) in scleractinian corals of the Caribbean and eastern Pacific. Proc Int Coral Reef Symp 8-2:1301–1305

    Google Scholar 

  • Baker AC, Rowan R, Knowlton N (1997) Symbiosis ecology of two Caribbean acroporid corals. Proc Int Coral Reef Symp 8-2:1295–1300

    Google Scholar 

  • Baker AC, Starger CJ, Mcclanahan TR, Glynn PW (2004) Corals′ adaptive response to climate change. Nature 430:741

    PubMed  CAS  Google Scholar 

  • Baker AC, Jones SHI, Lee TS (2005) Symbiont diversity in Arabian corals and its relation to patterns of contemporary and historical environmental stress. In: Abuzinada AH, Jouberte E, Krupp F (eds) Proceedings of an international symposium on the extent and impact of coral bleaching in the Arabian region. National Commission for Wildlife Conservation and Development, Riyadh, pp 24–36

    Google Scholar 

  • Banaszak AT, LaJeunesse TC, Trench RK (2000) The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates. J Exp Mar Biol Ecol 249:219–233

    CAS  Google Scholar 

  • Banaszak AT, Guadalupe Barba Santos M, LaJeunesse TC, Lesser MP (2006) The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagel-lates in cnidarian hosts from the Mexican Caribbean. J Exp Mar Biol Ecol 337:131–146

    CAS  Google Scholar 

  • Barbrook AC, Visram S, Douglas AE, Howe CJ (2006) Molecular diversity of dinoflagellate symbionts of Cnidaria: the psbA minicircle ofSymbiodinium. Protist 157:159–171

    PubMed  CAS  Google Scholar 

  • Barneah O, Weis VM, Perez S, Benayahu Y (2004) Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters. Mar Ecol Prog Ser 275:89–95

    CAS  Google Scholar 

  • Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 109–131

    Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B 273:2305–2312

    Google Scholar 

  • Bhagooli R, Hidaka M (2003) Comparison of stress susceptibility ofin hospiteand isolated zooxanthellae among five coral species. J Exp Mar Biol Ecol 291:181–197

    Google Scholar 

  • Blank RJ, Trench RK (1985) Speciation and symbiotic dinoflagellates. Science 229:656–658

    PubMed  Google Scholar 

  • Blank RJ, Trench RK (1986) Nomenclature of endosymbiotic dinoflagellates. Taxon 35:286–294

    Google Scholar 

  • Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Exploring the basis of thermotolerance in the reef coralGoniastrea aspera. Mar Ecol Prog Ser 242:119–129

    Google Scholar 

  • Buddemeier RW (1999) Coral adaptation and acclimatization: a most ingenious paradox. Am Zool 39:1–9

    Google Scholar 

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–326

    Google Scholar 

  • Cantin N, van Oppen MJH, Willis BL, Mieog JC, Negri AP (2008) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs (in review)

    Google Scholar 

  • Chen CA, Lam KK, Nakano Y, Tsai W-S (2003) A stable association of the stress-tolerant zoox-anthellae,Symbiodiniumclade D, with the low-temperature-tolerant coral,Oulastrea crispata(Scleractinia, Faviidae) in subtropical non-reefal coral communities. Zool Stud 42:540–550

    Google Scholar 

  • Chen CA, Wang JT, Fang LS, Yang JW (2005a) Fluctuating algal symbiont communities inAcropora palifera(Scleractinia: Acroporidae) from Taiwan. Mar Ecol Prog Ser 295:113–121

    Google Scholar 

  • Chen CA, Yang YW, Wei N V, Tsai WS, Fang LS (2005b) Symbiont diversity in scleractinian corals from tropical reefs and subtropical non-reef communities in Taiwan. Coral Reefs 24:11–22

    CAS  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genusSymbiodinium. Protist 156:19–34

    PubMed  CAS  Google Scholar 

  • Coffroth MA, Santos SR, Goulet TL (2001) Early ontogenetic expression of specificity in a cnidarian—algal symbiosis. Mar Ecol Prog Ser 222:85–96

    Google Scholar 

  • Darius HT, Dauga C, Grimont PD, Chungue E, Martin PV (1998) Diversity in symbiotic dinoflag-ellates (Pyrrhophyta) from seven scleractinian coral species: restriction enzyme analysis of small subunit ribosomal RNA genes. J Eukaryot Microbiol 45:619–627

    CAS  Google Scholar 

  • Darius HT, Martin PMV, Grimont PAD, Dauga C (2000) Small subunit rDNA sequence analysis of symbiotic dinoflagellates from seven scleractinian corals in a Tahitian lagoon. J Phycol 36:951–959

    CAS  Google Scholar 

  • Diekmann OE, Olsen JL, Stam WT, Bak RPM (2003) Genetic variation withinSymbiodiniumclade B from the coral genusMadracisin the Caribbean (Netherlands Antilles). Coral Reefs 22:29–33

    Google Scholar 

  • Fabricius KE, Klumpp DW (1995) Widespread mixotrophy in reef-inhabiting soft corals: the influence of depth, and colony expansion and contraction on photosynthesis. Mar Ecol Prog Ser 125:195–204

    Google Scholar 

  • Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458

    PubMed  CAS  Google Scholar 

  • Fadlallah YH (1983) Sexual reproduction, development and larval biology in scleractinian corals: a review. Coral Reefs 2:129–150

    Google Scholar 

  • Frank U, Oren U, Loya Y, Rinkevich B (1997) Alloimmune maturation in the coralStylophora pistillatais achieved through three distinctive stages, 4 months post-metamorphosis. Proc R Soc Lond B 264:99–104

    Google Scholar 

  • Garren M, Walsh SM, Caccone A, Knowlton N (2006) Patterns of association betweenSymbiodiniumand members of theMontastraea annularisspecies complex on spatial scales ranging from within colonies to between geographic regions. Coral Reefs 25:503–512

    Google Scholar 

  • Glynn PW, Mate JL, Baker AC, Calderon MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño—Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69:79–109

    Google Scholar 

  • Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7

    Google Scholar 

  • Goulet TL, Coffroth MA (2003a) Genetic composition of zooxanthellae between and within colonies of the octocoralPlexaura kuna, based on small subunit rDNA and multilocis DNA fingerprinting. Mar Biol 142:233–239

    CAS  Google Scholar 

  • Goulet TL, Coffroth MA (2003b) Stability of an octocoral—algal symbiosis over time and space. Mar Ecol Prog Ser 2500:117–124

    Google Scholar 

  • Goulet TL, Coffroth MA (2004) The genetic identity of dinoflagellate symbionts in Caribbean octocorals. Coral Reefs 23:465–472

    Google Scholar 

  • Goulet TL, Cook CB, Goulet D (2005) Effect of short-term exposure to elevated temperatures and light levels on photosynthesis of different host-symbiont combinations in theAiptasia pallida/ Symbiodiniumsymbiosis. Limnol Oceanogr 50:1490–1498

    CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    PubMed  CAS  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam, pp 133–207

    Google Scholar 

  • Hirose M, Kinzie RA III, Hidaka M (2001) Timing and process of entry of zooxanthellae into oocytes of hermatypic corals. Coral Reefs 20:273–280

    Google Scholar 

  • Holland L (2006) The molecular diversity of Symbiodinium (Seussiales: Dinoflagellata) within Alcyonacea of Bermuda and the Caribbean. MSc thesis, University of Toronto, Toronto

    Google Scholar 

  • Howells EJ, van Oppen MJH, Willis BL (2008) High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations ofSymbiodinium. Coral Reefs (in press)

    Google Scholar 

  • Huang H, Dong ZJ, Huang LM, Zhang JB (2006) Restriction fragment length polymorphism analysis of large subunit rDNA of symbiotic dinoflagellates from scleractinian corals in the Zhubi coral reef of the Nansha Islands. J Integr Plant Biol 48:148–152

    CAS  Google Scholar 

  • Hunter CL, Morden CW, Smith CM (1997) The utility of ITS sequences in assessing relationships among zooxanthellae and corals. Proc Coral Reef Symp 8-2:1599–1602

    Google Scholar 

  • Iglesias-Prieto R, Trench RK (1994) Acclimation and adaptation to irradiance in symbiotic dino-flagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser 113:163–175

    Google Scholar 

  • Iglesias-Prieto R, Trench RK (1997) Acclimation and adaptation to irradiance in symbiotic dino-flagellates. II. Response of chlorophyll-protein complexes to different photon flux densities. Mar Biol 1300:23–33

    Google Scholar 

  • Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B 271:1757–1763

    CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Karako-Lampert S, Katcoff DJ, Achituv Y, Dubinsky Z, Stambler N (2004) Do clades of symbiotic dinoflagellates in scleractinian corals of the Gulf of Eilat (Red Sea) differ from those of other coral reefs? J Exp Mar Biol Ecol 311:301–314

    Google Scholar 

  • Kemp DW, Cook CB, LaJeunesse TC, Brooks WR (2006) A comparison of the thermal bleaching responses of the zoanthidPalythoa caribaeorumfrom three geographically different regions in south Florida. J Exp Mar Biol Ecol 335:266–276

    Google Scholar 

  • Kinzie RA III (1974) Experimental infection of aposymbiotic gorgonian polyps with zooxanthellae. J Exp Mar Biol Ecol 15:335–345

    Google Scholar 

  • Kinzie RA III, Takayama M, Santos S, R, Coffroth MA (2001) The adaptive bleaching hypothesis: experimental tests of critical assumptions. Biol Bull 200:51–58

    PubMed  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genusSymbiodiniumusing the ITS region: In search of a “species” level marker. J Phycol 37:866–880

    CAS  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene—Pliocene transition. Mol Biol Evol 22:570–581

    PubMed  CAS  Google Scholar 

  • LaJeunesse TC, Loh WK, Van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, deVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004a) Closely relatedSymbiodiniumspp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Progr Ser 284:147–161

    Google Scholar 

  • LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW (2004b) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:596–603

    Google Scholar 

  • Lewis CL, Coffroth MA (2004) The acquisition of exogenous algal symbionts by an octocoral after bleaching. Science 304:1490–1492

    PubMed  CAS  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    PubMed  CAS  Google Scholar 

  • Loh W, Carter D, Hoegh-Guldberg O (1998) Diversity of zooxanthellae from scleractinian corals of One Tree Island (the Great Barrier Reef). In: Greenwood JG, Hall NJ (eds), Proc Aust Coral Reef Soc 75th Anniv Conf, Heron Island, 1997. University of Queensland, Brisbane, pp 141–149

    Google Scholar 

  • Loh WKW, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dino-flagellates from the wide ranging coral speciesSeriatopora hystrixandAcropora longicyathusin the Indo-West Pacific. Mar Ecol Prog Ser 222:97–107

    Google Scholar 

  • Magalon H, Baudry E, Huste A, Adjeroud M, Veuille M (2006) High genetic diversity of the symbiotic dinoflagellates in the coralPocillopora meandrinafrom the South Pacific. Mar Biol 148:913–922

    Google Scholar 

  • McClanahan TR, Sala E, Stickels PA, Cokos BA, Baker AC, Starger CJ, Jones SH (2003) Interaction between nutrients and herbivory in controlling algal communities and coral condition on Glover's Reef, Belize. Mar Ecol Prog Ser 261:135–147

    Google Scholar 

  • McClanahan TR, Baker AC, Ateweberhan M, Maina J, Moothien-Pillay KR (2005) Refining coral bleaching experiments and models through reiterative field studies. Mar Ecol Prog Ser 305:301–303

    Google Scholar 

  • Meyer JR, Ellner SP, Hairstone NGJ, Jones LE, Yoshida T (2006) Prey evolution on the time scale of predator—prey dynamics revealed by allele-specific quantitative PCR. Proc Natl Acad Sci USA 103:10690–10695

    PubMed  CAS  Google Scholar 

  • Mieog JC, van Oppen MJH, Cantin N, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence ofSymbiodiniumclade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 26:449–457

    Google Scholar 

  • Moore RB, Ferguson KM, Loh WKW, Hoegh-Guldberg O, Carter DA (2003) Highly organized structure in the non-coding region of the psbA minicircle from clade CSymbiodinium. Int J Syst Evol Microbiol 53:1725–1734

    PubMed  CAS  Google Scholar 

  • Moya A, Tambutté S, Tambutté E, Zoccola D, Caminiti N, Allemand D (2006) Study of calcification during a daily cycle of the coralStylophora pistillata: implications for ‘light-enhanced calcification’. J Exp Biol 209:3413–3419

    PubMed  CAS  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Google Scholar 

  • Nozawa Y, Loya Y (2005) Genetic relationship and maturity state of the allorecognition system affect contact reactions in juvenileSeriatoporacorals. Mar Ecol Prog Ser 286:115–123

    Google Scholar 

  • Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity amongSymbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 1399:1069–1078

    Google Scholar 

  • Pochon X, LaJeunesse TC, Pawlowski J (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar Biol 146:17–27

    Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genusSymbiodinium. Mol Phylogenet Evol 38:20–30

    PubMed  CAS  Google Scholar 

  • Ralph PJ, Gademann R, Larkum AWD (2001) Zooxanthellae expelled from bleached corals at 33°C are photosynthetically competent. Mar Ecol Prog Ser 220:163–168

    CAS  Google Scholar 

  • Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes ofSymbiodinium(Pyrrhophyta). J Phycol 42:568–579

    CAS  Google Scholar 

  • Rodriguez-Lanetty M, Loh W, Carter D, Hoegh-Guldberg O (2001) Latitudinal variability in symbiont specificity within the widespread scleractinian coralPlesiastrea versipora. Mar Biol 138:1175–1181

    CAS  Google Scholar 

  • Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeography and connectivity of the latitudinally widespread scleractinian coralPlesiastrea versiporain the Western Pacific. Mol Ecol 11:1177–1189

    PubMed  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Chang SJ, Song JI (2003) Specificity of two temperate dinoflagellate— anthozoan associations from the northwestern Pacific Ocean. Mar Biol 143:1193–1199

    Google Scholar 

  • Rodriguez-Lanetty M, Krupp DA, Weis VM (2004) Distinct ITS types ofSymbiodiniumin clade C correlate with cnidarian/dinoflagellate specificity during onset of symbiosis. Mar Ecol Prog Ser 275:97–102

    CAS  Google Scholar 

  • Rodriguez-Lanetty Wood-Charlson Hollingsworth LL, Krupp DA, Weis VM (2006) Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Mar Biol 149:713–719

    Google Scholar 

  • Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742

    PubMed  CAS  Google Scholar 

  • Rowan Knowlton N (1995) Intraspecific diversity and ecological zonation in coral—algal symbiosis. Proc Natl Acad Sci USA 92:2850–2853

    Google Scholar 

  • Rowan Powers DA (1991a) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351

    Google Scholar 

  • Rowan R, Powers DA (1991b) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73

    CAS  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    PubMed  CAS  Google Scholar 

  • Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: implications for extrapolating to the intact symbiosis. J Phycol 37:900–912

    CAS  Google Scholar 

  • Santos SR, Taylor DJ, Kinzie RAI, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogen Evol 23:97–111

    CAS  Google Scholar 

  • Santos SR, Gutierrez-Rodriguez C, Lasker HR, Coffroth MA (2003a)Symbiodiniumsp. associations in the gorgonianPseudopterogorgia elisabethaein the Bahamas: high levels of genetic variability and population structure in symbiotic dinoflagellates. Mar Biol 143:111–120

    Google Scholar 

  • Santos SR, Gutierrez-Rodriguez C, Coffroth MA (2003b) Phylogenetic identification of symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit (cp23S)-ribosomal DNA sequences. Mar Biotechnol 5:130–140

    CAS  Google Scholar 

  • Santos SR, Shearer TL, Hannes AR, Coffroth MA (2004) Fine-scale diversity and specifity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium, Dinophyceae) of the Caribbean. Mol Ecol 13:459–469

    PubMed  CAS  Google Scholar 

  • Savage AM, Goodson MS, Visram S, Trapido-Rosenthal H, Wiedenmann J, Douglas AE (2002a) Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagel-lates of the genusSymbiodiniumin corals and sea anemones. Mar Ecol Prog Ser 244:17–26

    Google Scholar 

  • Savage AM, Trapido-Rosenthal H, Douglas AE (2002b) On the functional significance of molecular variation inSymbiodinium, the symbiotic algae of Cnidaria: photosynthetic response to irradiance. Mar Ecol Prog Ser 244:27–37

    Google Scholar 

  • Schoenberg DA, Trench RK (1980) Genetic variation inSymbiodinium(=Gymnodinium) microadriaticumFreudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity ofSymbiodinium microadriaticum. Proc R Soc Lond B 207:445–460

    Google Scholar 

  • Stat M, Loh W, Carter D, Hoegh-Guldberg O (2006) The evolutionary history ofSymbiodiniumand scleractinian hosts — symbiosis, diversity and the effect of climate change. Perspect Plant Ecol Evol Syst 8: 23–43

    Google Scholar 

  • Strychar KB, Coates M, Sammarco PW, Piva TJ, Scott PT (2005) Loss ofSymbiodiniumfrom bleached soft coralsSarcophyton ehrenbergi, Sinulariasp. andXeniasp. J Exp Mar Biol Ecol 320:159–177

    Google Scholar 

  • Taylor, DL (1974) Symbiotic marine algae: taxonomy and biological fitness. In: Vernberg WB (ed), Symbiosis in the sea. University of South Carolina Press, Coumbia, pp 245–262

    Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski Pg (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    PubMed  CAS  Google Scholar 

  • Thornhill DJ, Fitt WK, Schmidt GW (2006a) Highly stable symbioses among western Atlantic brooding corals. Coral Reefs 25:515–519

    Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006b) Multi-year, seasonal genotypic surveys of coral—algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001a) Zooxanthellae of theMontastraea annularisspecies complex: patterns of distribution of four taxa ofSymbiodiniumon different reefs and across depths. Biol Bull 201:348–359

    CAS  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001b) Repopulation of zooxanthellae in the Caribbean coralsMontastraea annularisandM. faveolatafollowing experimental and disease-associated bleaching. Biol Bull 201:360–373

    CAS  Google Scholar 

  • Ulstrup KE, van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) inAcroporacorals on the Great Barrier Reef. Mol Ecol 12:3477–3484

    PubMed  CAS  Google Scholar 

  • Ulstrup KE, Berkelmans R, Ralph PJ, van Oppen MJH (2006) Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxan-thellae. Mar Ecol Prog Ser 314:135–148

    Google Scholar 

  • van Oppen MJH (2004) Mode of zooxanthella transmission does not affect zooxanthella diversity in acroporid corals. Mar Biol 144:1–7

    Google Scholar 

  • van Oppen MJH, Palstra FP, Piquet AM-T, Miller DJ (2001) Patterns of coral—dinoflagellate associations inAcropora: significance of local availability and physiology ofSymbiodiniumstrains and host—symbiont selectivity. Proc R Soc Lond B 268:1759–1767

    Google Scholar 

  • van Oppen MJH, Mieog JC, Sanchez CA, Fabricius KE (2005a) Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Mol Ecol 14:2403–2417

    Google Scholar 

  • van Oppen MJH, Mahiny A, Done T (2005b) Geographic patterns of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event. Coral Reefs 24:482–487

    Google Scholar 

  • Visram S, Douglas AE (2006) Molecular diversity of symbiotic algae (zooxanthellae) in sclerac-tinian corals of Kenya. Coral Reefs 25:172–176

    Google Scholar 

  • Ware JR, Fautin DG, Buddemeier RW (1996) Patterns of coral bleaching: modeling the adaptive bleaching hypothesis. Ecol Model 84:199–214

    Google Scholar 

  • Warner ME, LaJeunesse TC, Robison JD, Thur RM (2006) The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: potential implications for coral bleaching. Limnol Oceanogr 51:1887–1897

    Google Scholar 

  • Wilcox TP (1998) Large-subunit ribosomal RNA systematics of symbiotic dinoflagellates: morphology does not recapitulate phylogeny. Mol Phylogenet Evol 10:436–448

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine J. H. van Oppen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Oppen, M.J.H., Baker, A.C., Coffroth, M.A., Willis, B.L. (2009). Bleaching Resistance and the Role of Algal Endosymbionts. In: van Oppen, M.J.H., Lough, J.M. (eds) Coral Bleaching. Ecological Studies, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69775-6_6

Download citation

Publish with us

Policies and ethics