Skip to main content

The Evolution of the Coral–Algal Symbiosis

  • Chapter
Coral Bleaching

Part of the book series: Ecological Studies ((ECOLSTUD,volume 205))

Abstract

The fossil record chronicles the rise, fall, and recovery of reefs. It is a sobering record because of the longevity of post-extinction global reef gaps and the length of time before reef recovery. Intervals when reefs are either entirely absent or greatly reduced range from 1×106 years to as much as 10×106 years in duration. The length of time for recovery has implications for the current environmental crisis. Put into the perspective of the current biotic marine crisis, the implications are bleak for the future evolution of reefs. Although evolution is not predictable, the derivation of meaningful estimates on diversity trends and rates of recovery following mass extinctions, are emerging from the fossil record. A study of the role of zooxanthellate photosymbiosis in the geologic past may provide new insights into both successes and failures on living coral reefs. The integration of biology and the fossil record offers potentials to better understand the current coral reef problems, including the bleaching phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Backhouse J, Balme BE, Helby R, Marshall N, Morgan R (2002) Palynological zonation and correlation of the latest Triassic, northern Carnarvon Basin. In: Keep M, Moss SJ (eds) The sedimentary basins of western Australia. Proc Pet Explor Soc Aust Symp 2002:179–201

    Google Scholar 

  • Beauvais L (1984) Evolution and diversification of Jurassic Scleractinia. Paleontogr Am 54:219–224

    Google Scholar 

  • Brenner W (1992) First results of Late Triassic palynology of the Wombat Plateau, northwestern Australia. Proc Ocean Drill Prog Sci Res 122:413–426

    Google Scholar 

  • Bucefalo Palliani R, Riding JB (1997) Umbriadinium mediterraneense gen. et sp. nov. and Valvaeodinium hirsutum sp. nov.; two dinoflagellate cysts from the lower jurassic of the Tethyan realm. Palynology 21:197–206

    Google Scholar 

  • Bucefalo Palliani R, Riding JB (2000) Subdivision of the dinoflagellate cyst family Suessiaceae and discussion of its evolution. J Micropalaeontol 19:133–137

    Google Scholar 

  • Bucefalo Palliani R, Riding JB (2003) Umbriadinium and Polarella: an example of selectivity in the dinoflagellate fossil record. Grana 42:108–111

    Google Scholar 

  • Cairns, SD (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull Mar Sci 81:311–322

    Google Scholar 

  • Carlson DB, Goreau TJ, Marshall AT (1996) Calcification rates in corals. Science 274:117–118

    Article  Google Scholar 

  • Coates AG, Jackson JBD (1987) Clonal growth, algal symbiosis and reef formation by corals. Paleobiology 13:363–378

    Google Scholar 

  • Copper P (1989) Enigmas in Phanerozoic reef development. Mem Assoc Australas Paleontol 8:371–385

    Google Scholar 

  • Copper P (2002) Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Soc Econ Paleontol Mineral, Tulsa, pp 181–238

    Google Scholar 

  • Cowen R (1983) Algal symbiosis and its recognition in the fossil record. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities. Plenum, New York, pp 431–478

    Google Scholar 

  • Cowen R (1988) The role of algal symbiosis in reefs through time. Palaios 3:221–227

    Article  Google Scholar 

  • Cuif JP, Dauphin Y, Freiwald A, Gautret P, Zibrowius H (1999) Biochemical markers of zooxan-thellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comp Biochem Physiol A 123:269–278

    Article  Google Scholar 

  • Erwin D (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton

    Google Scholar 

  • Fautin DG, Buddemeier RW (2004) Adaptive bleaching: a general phenomenon. Hydrobiologia 530/531:495–509

    Article  Google Scholar 

  • Fensome RA, Saldarriaga JF, Taylor FJR (1999) Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies. Grana 38:66–80

    Google Scholar 

  • Fine M, Tchernov D (2007) Scleractinian corals survive and recover from decalcification. Science 317:1811

    Article  CAS  Google Scholar 

  • Flügel E (2002) Triassic reef patterns. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Soc Econ Paleontol Mineral, Tulsa, pp 391–463

    Google Scholar 

  • Flügel E, Senowbari-Daryan B (2001) Triassic reefs of the Tethys. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer/Plenum, New York, pp 217–249

    Google Scholar 

  • Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    CAS  Google Scholar 

  • Goreau TJ, Goreau NI (1959) The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol Bull 117:127–167

    Article  Google Scholar 

  • Goreau TJ, Goreau NI, Trench RK, Hayes RL (1996) Calcification rates in corals. Science 274:117

    Article  CAS  Google Scholar 

  • Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7

    Article  Google Scholar 

  • Hallam A, Goodfellow WD (1990) Facies and geochemical evidence bearing on the end-Triassic disappearance of the alpine reef system. Hist Biol 4:131–138

    Article  Google Scholar 

  • Hallock P (1997) Reefs and reef limestone in earth history. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 13–42

    Google Scholar 

  • Hallock P (2001) Coral reefs, carbonate sediments, nutrients, and global change. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer/Plenum, New York, pp 388–427

    Google Scholar 

  • Hochuli PA, Frank SM (2000) Palynology (dinoflagellate cysts, spore-pollen) and stratigraphy of the Lower Carnian Raibl Group in the eastern Swiss Alps. Ecol Geol Helv 93:429–443

    Google Scholar 

  • Hoegh-Guldberg O (2005) Low coral cover in a high CO2 world. J Geophys Res 110:1–11

    Article  CAS  Google Scholar 

  • Insalaco E (1996) Upper Jurassic microsolenid biostromes of northern and central Europe: facies and depositional environment. Palaeogeogr Palaeoclimatol Palaeoecol 121:169–194

    Article  Google Scholar 

  • Johnson CC, Sanders D, Kauffman EG, Hay WW (2001) Patterns and processes influencing upper Cretaceous reefs. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Soc Econ Paleontol Mineral, Tulsa, pp 549–585

    Google Scholar 

  • Kiessling W (2001) Paleoclimatic significance of Phanerozoic reefs. Geology 29:751–754

    Article  Google Scholar 

  • Kiessling W, Baron-Szabo RC (2004) Extinction and recovery patterns of scleractinian corals at the Cretaceous—Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol 214:195–223

    Google Scholar 

  • Kiessling W, Aragon E, Scasso R, Aberhan M, Kriwet J, Medina F, Fracchia D (2005) Massive corals in Paleocene siliciclastic sediments of Chubut (Argentina). Facies 51:233–241

    Article  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene—Pliocene transition. Mol Biol Evol 22:570–581

    Article  PubMed  CAS  Google Scholar 

  • Lehrmann DJ (1999) Early Triassic calcimicrobial mounds and bistromes of the Nanpanjiang Basin, south China. Geology 27:359–362

    Article  Google Scholar 

  • Leinfelder RR (2001) Jurassic reef ecosystems. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer/Plenum, New York, pp 251–309

    Google Scholar 

  • Lindström S, Erlström M (2006) The late Rhaetian transgression in southern Sweden: regional (and global) recognition and relation to the Triassic–Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 241:339–372

    Article  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  PubMed  CAS  Google Scholar 

  • MacRae RA, Fensome RA, Williams GL (1996) Fossil dinoflagellate diversity, originations, and extinctions and their significance. Can J Bot 74:1687–1694

    Article  Google Scholar 

  • Marshall AT (1996) Calcification in hermatypic and ahermatypic corals. Science 271:637–639

    Article  CAS  Google Scholar 

  • Medina M, Collins AG, Takaoka TL, Kuehl J V, Boore JL (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci USA 103:9096–9100

    Article  PubMed  CAS  Google Scholar 

  • Mieog JC, van Oppen MJH, Cantin NE, Stam WT, Olsen, JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 36:449–457

    Article  Google Scholar 

  • Montresor MG, Procaccini G, Stoeker DK (1999) Polarella glacialis, gen. nov., sp. nov. (Dinophyceae): Suessiaceae are still alive! J Phycol 35:186–197

    Article  Google Scholar 

  • Morbey SJ, Dunay RE (1978) Early Jurassic to Late Triassic dinoflagellate cysts and miospores. In: Thusu B (ed) Distribution of biostratigraphically diagnostic dinoflagellate cysts and miospores from the northwest European continental shelf and adjacent areas, vol 100. Continental Shelf Institute, London, pp 47–59

    Google Scholar 

  • Muscatine L, Goiran C, Land L, Jaubert J, Cuif JP, Allemand D (2005) Stable isotopes (δ13C and δ15N ) of organic matrix from coral skeleton. Proc Natl Acad Sci USA 102:1525–1530

    Article  PubMed  CAS  Google Scholar 

  • Myers N, Knoll AH (2001) The biotic crisis and the future of evolution. Proc Natl Acad Sci USA 98:5389–5392

    Article  PubMed  CAS  Google Scholar 

  • Perrin C (2002) Tertiary: the emergence of modern reef ecosystems. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Soc Econ Paleontol Mineral, Tulsa, pp 587–621

    Google Scholar 

  • Riedel P (1991) Korallen in der Trias der Tethys: Stratigraphische Reichweiten, Diversitätsmuster, Entwicklungstrends und Bedeutung als Rifforganismen. Mitt Geol Bergbaustud Oesterr 7:97–118

    Google Scholar 

  • Rosen BR (2000) Algal symbiosis, and the collapse and recovery of reef communities: lazarus corals across the K-T boundary. In: Culver SJ, Rawson PF (eds) Biotic response to global change, vol 12. Cambridge University Press, Cambridge, pp 164–180

    Google Scholar 

  • Rosen BR, Turnšek D (1989) Extinction patterns and biogeography of scleractinian corals across the Cretaceous/tertiary boundary. Mem Assoc Australas Palaeontol 8:355–370

    Google Scholar 

  • Rosen BR, Aillud GS, Bosellini FR, Clack NJ, Insalaco E, Valldeperas FX, Wilson, MEJ (2000). Platy coral assemblages: 200 million years of functional stability in response to the limiting effects of light and turbidity. Proc Int Coral Reef Symp 9-1:255–264

    Google Scholar 

  • Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J Phycol 34:407–417

    Article  Google Scholar 

  • Shaked Y, de Vargas C (2006) Pelagic photosymbiosis: rDNA assessment of diversity and evolution of dinoflagellate symbionts and planktonic fominiferal hosts. Mar Ecol Prog Ser 325:59–71

    Article  CAS  Google Scholar 

  • Smith DC, Douglas AE (1987) The biology of symbiosis. Arnold, London

    Google Scholar 

  • Stanley GD Jr (1981) The early history of scleractinian corals and its geologic consequences. Geology 9:507–511

    Article  Google Scholar 

  • Stanley GD Jr (1988) The history of early Mesozoic reef communities: a three-step process. Palaios 3:170–183

    Article  Google Scholar 

  • Stanley GD Jr (1992) Tropical reef ecosystems. In: Nierenberg WA (ed) Encyclopedia of earth system science, vol 4. Academic, New York, pp 375–388

    Google Scholar 

  • Stanley GD Jr (2001) Introduction to reef ecosystems and their evolution. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer/Plenum, New York, pp 1–39

    Google Scholar 

  • Stanley GD Jr (2003) The evolution of corals and their early history. Earth Sci Rev 60:195–225

    Article  Google Scholar 

  • Stanley GD Jr (2006) Photosymbiosis and the evolution of modern coral reefs. Science312:857–858

    Article  PubMed  CAS  Google Scholar 

  • Stanley GD Jr (2007) Ocean acidification and scleractinian corals. Science 317:1032–1033

    Article  PubMed  CAS  Google Scholar 

  • Stanley GD Jr, Fautin DF (2001) The origins of modern corals. Science 291:1913–1914

    Article  PubMed  CAS  Google Scholar 

  • Stanley GD Jr, Swart PK (1995) Evolution of the coral—zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21:179–199

    Google Scholar 

  • Stanton RJ Jr (2006) Nutrient models for the development and location of ancient reefs. Geo Alp 3:191–206

    Google Scholar 

  • Statt M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scle-ractinian hosts – symbiosis, diversity and the effects of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol 48:497–530

    Google Scholar 

  • Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci Rev 19:51–80

    Article  CAS  Google Scholar 

  • Talent JA (1988) Organic reef-building: episodes of extinction and symbiosis? Senckenbergiana Lethaea 69:315–368

    Google Scholar 

  • Tanner LH, Lucas SG, Chapman MG (2004) Assessing the record and causes of Late Triassic extinctions. Earth Sci Rev 65:103–139

    Article  CAS  Google Scholar 

  • van de Schootbrugge B, Tremolada F, Bailey TR, Feist-Burkhardt S, Brinkhuis H, Pross J, Kent DV, Falkowski PG (2007) End-triassic calcification crisis and blooms of organic-walled disaster species. Palaeogeogr Palaeoclimatol Palaeoecol 244:126–141

    Article  Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on invertebrate paleontology, part F. Geological Society of America, Boulder, pp 328–444

    Google Scholar 

  • Wood R (1999) Reef evolution. Oxford University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Stanley Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stanley, G.D., van de Schootbrugge, B. (2009). The Evolution of the Coral–Algal Symbiosis. In: van Oppen, M.J.H., Lough, J.M. (eds) Coral Bleaching. Ecological Studies, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69775-6_2

Download citation

Publish with us

Policies and ethics