Advertisement

Resource Bounded Frequency Computations with Three Errors

  • Ulrich Hertrampf
  • Christoph Minnameier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)

Abstract

We deal with frequency computations in polynomial time, or more generally with resource bounded frequency computations. We investigate the first non-trivial case of the Hinrichs-Wechsung conjecture, which states that as soon as we have at least 2 d  + d inputs to be queried, it does not become harder to get an answer with at most d errors, if we increase the number of inputs to be queried. This conjecture can easily be seen to hold for cases d < 3, and it seems very hard to prove in general. We solve the problem affirmatively in the case d = 3 by a combination of theoretical reasoning with a highly optimized computer search.

Keywords

Frequency Computation Finite Automaton Full Paper Partial Matrice Partial Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Austinat, H., Diekert, V., Hertrampf, U.: A Structural Property of Regular Frequency Computations. Theor. Comp. Sc. 292(1), 33–43 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Austinat, H., Diekert, V., Hertrampf, U., Petersen, H.: Regular Frequency Computations. In: RIMS Symposium on Algebraic Systems, Formal Languages and Computation, Kyoto, Japan, pp. 35–42 (2000)Google Scholar
  3. 3.
    Beigel, R., Gasarch, W.I., Kinber, E.B.: Frequency Computation and Bounded Queries. Theor. Comp. Sc. 163(1–2), 177–192 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Degtev, A.N.: On (m,n)-Computable Sets. Algebraic Systems, 88–99 (1981) (in Russian) Google Scholar
  5. 5.
    Hinrichs, M., Wechsung, G.: Time Bounded Frequency Computations. Information and Computation 139(2), 234–257 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kinber, E.B.: Frequency Calculations of General Recursive Predicates and Frequency Enumeration of Sets. Soviet Mathematics Doklady 13, 873–876 (1972)zbMATHGoogle Scholar
  7. 7.
    Kinber, E.B.: On Frequency-Enumerable Sets. Algebra i Logika 13, 398–419 (1974) (in Russian); English translation in Algebra and Logic 13, 226–237 (1974)MathSciNetGoogle Scholar
  8. 8.
    Kinber, E.B.: Frequency Computations in Finite Automata. Kibernetika 2, 7–15 (1976) (in Russian); English translation in Cybernetics 12, 179–187 (1976)MathSciNetGoogle Scholar
  9. 9.
    Kummer, M., Stephan, F.: The Power of Frequency Computation. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 969, pp. 323–332. Springer, Heidelberg (1995)Google Scholar
  10. 10.
    Kummer, M., Stephan, F.: Recursion Theoretic Properties of Frequency Computation and Bounded Queries. Information and Computation 120, 59–77 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kummer, M.: A Proof of Beigel’s Cardinality Conjecture. J. of Symbolic Logic 57(2), 677–681 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    McNaughton, R.: The Theory of Automata, a Survey. Advances in Computers 2, 379–421 (1961)zbMATHMathSciNetGoogle Scholar
  13. 13.
    McNicholl, T.: The Inclusion Problem for Generalized Frequency Classes. PhD thesis, George Washington University, Washington (1995)Google Scholar
  14. 14.
    Rose, G.F.: An Extended Notion of Computability, Abstracts Int. Congress for Logic, Methodology, and Philosophy of Science. Stanford, California, p. 14 (1960)Google Scholar
  15. 15.
    Tantau, T.: Towards a Cardinality Theorem for Finite Automata. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 625–636. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Trakhtenbrot, B.A.: On the Frequency Computation of Functions. Algebra i Logika 2, 25–32 (1963) (in Russian)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ulrich Hertrampf
    • 1
  • Christoph Minnameier
    • 2
  1. 1.Abt. Theor. InformatikUniversity of StuttgartStuttgartGermany
  2. 2.Lst. Prakt. Informatik IIUniversity of MannheimMannheimGermany

Personalised recommendations