Probe Ptolemaic Graphs

  • David B. Chandler
  • Maw-Shang Chang
  • Ton Kloks
  • Van Bang Le
  • Sheng-Lung Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)


Given a class of graphs, \(\mathcal{G}\), a graph G is a probe graph of \(\mathcal{G}\) if its vertices can be partitioned into two sets, ℙ (the probes) and ℕ (the nonprobes), where ℕ is an independent set, such that G can be embedded into a graph of \(\mathcal{G}\) by adding edges between certain nonprobes. In this paper we study the probe graphs of ptolemaic graphs when the partition of vertices is unknown. We present some characterizations of probe ptolemaic graphs and show that there exists a polynomial-time recognition algorithm for probe ptolemaic graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandelt, H.J., Mulder, H.M.: Distance-Hereditary Graphs. Journal of Combinatorial Theory, Series B 41, 182–208 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bayer, D., Le, V.B., de Ridder, H.N.: Probe Trivially Perfect Graphs and Probe Threshold Graphs (manuscript) (2006)Google Scholar
  3. 3.
    Berry, A., Golumbic, M.C., Lipshteyn, M.: Two Tricks to Triangulate Chordal Probe Graphs in Polynomial Time. In: Proceedings of 15th ACM–SIAM Symposium on Discrete Algorithms, pp. 962–969 (2004)Google Scholar
  4. 4.
    Brändstadt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. In: SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (1999)Google Scholar
  5. 5.
    Chandler, D.B., Chang, M.-S., Kloks, A.J.J., Liu, J., Peng, S.-L.: On Probe Permutation Graphs. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 494–504. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Chandler, D.B., Chang, M.-S., Kloks, T., Liu, J., Peng, S.-L.: Recognition of Probe Cographs and Partitioned Probe Distance hereditary graphs. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 267–278. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Chandler, D.B., Chang, M.-S., Kloks, T., Liu, J., Peng, S.-L.: Partitioned Probe Comparability Graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 179–190. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Chang, G.J., Kloks, A.J.J., Liu, J., Peng, S.-L.: The PIGs Full Monty — a Floor Show of Minimal Separators. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 521–532. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Chang, M.-S., Kloks, T., Kratsch, D., Liu, J., Peng, S.-L.: On the Recognition of Probe Graphs of Some Self-complementary Graph Classes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 808–817. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Corneil, D.G., Lerchs, H., Stewart, L.K.: Complement Reducible Graphs. Discrete Applied Mathematics 3, 163–174 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Dirac, G.A.: On Rigid Circuit Graphs. Abh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Farber, M., Jamison, R.E.: Convexity in Graphs and Hypergraphs. SIAM J. Alg. Discrete Methods 7, 433–444 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Habib, M., Paul, C.: A Simple Linear Time Algorithm for Cograph Recognition. Discrete Applied Mathematics 145, 183–197 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Hajnal, A., Surányi, J.: Uber die Auflösung von Graphen in Vollständige Teilgraphen. Ann. Univ. Sci. Budapest, Eötvös Sect. Math 1, 113–121 (1958)zbMATHGoogle Scholar
  15. 15.
    Hammer, P.L., Maffray, F.: Completely Separable Graphs. Discrete Applied Mathematics 27, 85–99 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Hoàng, C.T., Sritharan, R.: Finding Houses and Holes in Graphs. Theoretical Computer Science 259, 233–244 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Howorka, E.: A Characterization of Ptolemaic Graphs. Journal of Graph Theory 5, 323–331 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Johnson, J.L., Spinrad, J.: A Polynomial-Time Recognition Algorithm for Probe Interval Graphs. In: Proceedings of 12th ACM–SIAM Symposium on Discrete Algorithms (SODA 2001), pp. 447–486 (2001)Google Scholar
  19. 19.
    Kay, D.C., Chartrand, G.: A Characterization of Certain Ptolemaic Graphs. Canad. J. Math. 17, 342–346 (1965)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Le, V.B., de Ridder, H.N.: Probe Split Graphs. Discrete Mathematics and Theoretical Computer Science 9, 207–238 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Le, V.B., de Ridder, H.N.: Characterizations and Linear-Time Recognition for Probe Cographs. LNCS, vol. 4769, pp. 226–237 (2007)Google Scholar
  22. 22.
    McConnell, R.M., Spinrad, J.P.: Construction of Probe Interval Graphs. In: Proceedings 13th ACM–SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 866–875 (2002)Google Scholar
  23. 23.
    Möhring, R.H., Radermacher, F.J.: Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization. Ann. Discrete Math. 19, 257–356 (1984)Google Scholar
  24. 24.
    Nicolai, F.: Strukturelle und Algorithmische Aspekte Distanz-erblicher Graphen und Verwandter Klasses. Dissertation thesis, Gerhard-Mercator-Universität, Duisburg (1994)Google Scholar
  25. 25.
    de Ridder, H.N.: On Probe Graph Classes. PhD thesis, Universität Rostock, Germany (2007)Google Scholar
  26. 26.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic Aspects of Vertex Elimination on Graph. SIAM Journal of Computing 5, 266–283 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Soltan, V.P.: d-Convexity in Graphs. Soviet Math. Dokl. 28, 419–421 (1983)zbMATHGoogle Scholar
  28. 28.
    Uehara, R., Uno, Y.: Laminar Structure of Ptolemaic and its Applications. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 186–195. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Wolk, E.S.: The Comparability Graph of a Tree. Proceedings of the American Mathematical Society 13, 789–795 (1962)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Wolk, E.S.: A Note on The Comparability Graph of a Tree. Proceedings of the American Mathematical Society 16, 17–20 (1965)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David B. Chandler
    • 1
  • Maw-Shang Chang
    • 2
  • Ton Kloks
    • 1
  • Van Bang Le
    • 3
  • Sheng-Lung Peng
    • 4
  1. 1.Department of Mathematical SciencesUniversity of Delaware NewarkDelawareUSA
  2. 2.Department of Computer Science and Information EngineeringNational Chung Cheng UniversityChiayiTaiwan
  3. 3.Institut für InformatikUniversität RostockRostockGermany
  4. 4.Department of Computer Science and Information EngineeringNational Dong Hwa UniversityHualienTaiwan

Personalised recommendations