Skip to main content

Probe Ptolemaic Graphs

  • Conference paper
Computing and Combinatorics (COCOON 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5092))

Included in the following conference series:

Abstract

Given a class of graphs, \(\mathcal{G}\), a graph G is a probe graph of \(\mathcal{G}\) if its vertices can be partitioned into two sets, ℙ (the probes) and ℕ (the nonprobes), where ℕ is an independent set, such that G can be embedded into a graph of \(\mathcal{G}\) by adding edges between certain nonprobes. In this paper we study the probe graphs of ptolemaic graphs when the partition of vertices is unknown. We present some characterizations of probe ptolemaic graphs and show that there exists a polynomial-time recognition algorithm for probe ptolemaic graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt, H.J., Mulder, H.M.: Distance-Hereditary Graphs. Journal of Combinatorial Theory, Series B 41, 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayer, D., Le, V.B., de Ridder, H.N.: Probe Trivially Perfect Graphs and Probe Threshold Graphs (manuscript) (2006)

    Google Scholar 

  3. Berry, A., Golumbic, M.C., Lipshteyn, M.: Two Tricks to Triangulate Chordal Probe Graphs in Polynomial Time. In: Proceedings of 15th ACM–SIAM Symposium on Discrete Algorithms, pp. 962–969 (2004)

    Google Scholar 

  4. Brändstadt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. In: SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (1999)

    Google Scholar 

  5. Chandler, D.B., Chang, M.-S., Kloks, A.J.J., Liu, J., Peng, S.-L.: On Probe Permutation Graphs. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 494–504. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Chandler, D.B., Chang, M.-S., Kloks, T., Liu, J., Peng, S.-L.: Recognition of Probe Cographs and Partitioned Probe Distance hereditary graphs. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 267–278. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Chandler, D.B., Chang, M.-S., Kloks, T., Liu, J., Peng, S.-L.: Partitioned Probe Comparability Graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 179–190. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Chang, G.J., Kloks, A.J.J., Liu, J., Peng, S.-L.: The PIGs Full Monty — a Floor Show of Minimal Separators. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 521–532. Springer, Heidelberg (2005)

    Google Scholar 

  9. Chang, M.-S., Kloks, T., Kratsch, D., Liu, J., Peng, S.-L.: On the Recognition of Probe Graphs of Some Self-complementary Graph Classes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 808–817. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Corneil, D.G., Lerchs, H., Stewart, L.K.: Complement Reducible Graphs. Discrete Applied Mathematics 3, 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dirac, G.A.: On Rigid Circuit Graphs. Abh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  12. Farber, M., Jamison, R.E.: Convexity in Graphs and Hypergraphs. SIAM J. Alg. Discrete Methods 7, 433–444 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Habib, M., Paul, C.: A Simple Linear Time Algorithm for Cograph Recognition. Discrete Applied Mathematics 145, 183–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hajnal, A., Surányi, J.: Uber die Auflösung von Graphen in Vollständige Teilgraphen. Ann. Univ. Sci. Budapest, Eötvös Sect. Math 1, 113–121 (1958)

    MATH  Google Scholar 

  15. Hammer, P.L., Maffray, F.: Completely Separable Graphs. Discrete Applied Mathematics 27, 85–99 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoàng, C.T., Sritharan, R.: Finding Houses and Holes in Graphs. Theoretical Computer Science 259, 233–244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Howorka, E.: A Characterization of Ptolemaic Graphs. Journal of Graph Theory 5, 323–331 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Johnson, J.L., Spinrad, J.: A Polynomial-Time Recognition Algorithm for Probe Interval Graphs. In: Proceedings of 12th ACM–SIAM Symposium on Discrete Algorithms (SODA 2001), pp. 447–486 (2001)

    Google Scholar 

  19. Kay, D.C., Chartrand, G.: A Characterization of Certain Ptolemaic Graphs. Canad. J. Math. 17, 342–346 (1965)

    MathSciNet  MATH  Google Scholar 

  20. Le, V.B., de Ridder, H.N.: Probe Split Graphs. Discrete Mathematics and Theoretical Computer Science 9, 207–238 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Le, V.B., de Ridder, H.N.: Characterizations and Linear-Time Recognition for Probe Cographs. LNCS, vol. 4769, pp. 226–237 (2007)

    Google Scholar 

  22. McConnell, R.M., Spinrad, J.P.: Construction of Probe Interval Graphs. In: Proceedings 13th ACM–SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 866–875 (2002)

    Google Scholar 

  23. Möhring, R.H., Radermacher, F.J.: Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization. Ann. Discrete Math. 19, 257–356 (1984)

    Google Scholar 

  24. Nicolai, F.: Strukturelle und Algorithmische Aspekte Distanz-erblicher Graphen und Verwandter Klasses. Dissertation thesis, Gerhard-Mercator-Universität, Duisburg (1994)

    Google Scholar 

  25. de Ridder, H.N.: On Probe Graph Classes. PhD thesis, Universität Rostock, Germany (2007)

    Google Scholar 

  26. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic Aspects of Vertex Elimination on Graph. SIAM Journal of Computing 5, 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Soltan, V.P.: d-Convexity in Graphs. Soviet Math. Dokl. 28, 419–421 (1983)

    MATH  Google Scholar 

  28. Uehara, R., Uno, Y.: Laminar Structure of Ptolemaic and its Applications. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 186–195. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  29. Wolk, E.S.: The Comparability Graph of a Tree. Proceedings of the American Mathematical Society 13, 789–795 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wolk, E.S.: A Note on The Comparability Graph of a Tree. Proceedings of the American Mathematical Society 16, 17–20 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiaodong Hu Jie Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chandler, D.B., Chang, MS., Kloks, T., Le, V.B., Peng, SL. (2008). Probe Ptolemaic Graphs. In: Hu, X., Wang, J. (eds) Computing and Combinatorics. COCOON 2008. Lecture Notes in Computer Science, vol 5092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69733-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69733-6_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69732-9

  • Online ISBN: 978-3-540-69733-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics