Advertisement

Geometric Spanner of Objects under L1 Distance

  • Yongding Zhu
  • Jinhui Xu
  • Yang Yang
  • Naoki Katoh
  • Shin-ichi Tanigawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)

Abstract

Geometric spanner is a fundamental structure in computational geometry and plays an important role in many geometric networks design applications. In this paper, we consider the following generalized geometric spanner problem under L 1 distance: Given a set of disjoint objects S, find a spanning network G with minimum size so that for any pair of points in different objects of S, there exists a path in G with length no more than t times their L 1 distance, where t is the stretch factor. Specifically, we focus on three types of objects: rectilinear segments, axis aligned rectangles, and rectilinear monotone polygons. By combining ideas of t-weekly dominating set, walls, aligned pairs and interval cover, we develop a 4-approximation algorithm (measured by the number of Steiner points) for each type of objects. Our algorithms run in near quadratic time, and can be easily implemented for practical applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H., Smid, M., Vigneron, A.: Sparse Geometric Graphs with Small Dilation. In: Proceedings of the 12th Computing: The Australasian Theroy Symposium, vol. 51 (2006)Google Scholar
  2. 2.
    Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean Spanners: Short, Thin, and Lanky. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing (STOC 1995), pp. 489–498 (1995)Google Scholar
  3. 3.
    Arya, S., Mount, D.M., Smid, M.: Dynamic Algorithms for Geometric Spanners of Small Diameter: Randomized Rolutions. Technical Report, Max-Planck-Institut für Informatik (1994)Google Scholar
  4. 4.
    Arya, S., Mount, D.M., Smid, M.: Randomized and Deterministic Algorithms for Geometric Spanners of Small Diameter. In: 35th IEEE Symposium on Foundtions of Computer Science, pp. 703–712 (1994)Google Scholar
  5. 5.
    Asano, T., de Berg, M., Cheong, O., Everett, H., Haverkort, H., Katoh, N., Wolff, A.: Optimal Spanners for Axis-Aligned Rectangles. Comput. Geom. Theory Appl. 30(1), 59–77 (2005)zbMATHGoogle Scholar
  6. 6.
    Chandra, B., Das, G., Narasimhan, G., Soares, J.: New Spareness Results on Graph Spanners. In: Proceedings of the Eighth Annual Symposium on Computational Geometry, pp. 192–201 (1992)Google Scholar
  7. 7.
    Clarkson, K.L.: Approximation Algorithms for Shortest Path Motion Planning. In: Proceedings of the nineteenth annual ACM conference on Theory of computing, pp. 56–65 (1987)Google Scholar
  8. 8.
    Das, G., Heffernan, P., Narasimhan, G.: Optimally Sparse Spanners in 3-Dimensional Euclidean Space. In: Proceedings of the Ninth Annual Symposium on Computational Geometry, pp. 53–62 (1993)Google Scholar
  9. 9.
    Das, G., Narasimhan, G.: A Fast Algorithm for Constructing Sparse Euclidean Spanners. In: Proceedings of the Tenth Annual Symposium on Computational Geometry, pp. 132–139 (1994)Google Scholar
  10. 10.
    Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast Greedy Algorithms for Constructing Sparse Geometric Spanners. SIAM Journal on Computing 31(5), 1479–1500 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Keil, J.M.: Approximating the Complete Euclidean Graph. In: Proceedings of 1st Scandinavian Workshop on Algorithm Theory, pp. 208–213 (1988)Google Scholar
  12. 12.
    Keil, J.M., Gutwin, C.A.: Classes of Graphs which Approximate the Complete Euclidean Graph. Discrete and Computational Geometry 7, 13–28 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rupper, J., Seidel, R.: Approximating the d-dimensional Complete Euclidean Graph. In: Proceedings of 3rd Canadian Conference on Computational Geometry, pp. 207–210 (1991)Google Scholar
  14. 14.
    Yang, Y., Zhu, Y., Xu, J., Katoh, N.: Geometric Spanner of Segments. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 75–87. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yongding Zhu
    • 1
  • Jinhui Xu
    • 1
  • Yang Yang
    • 1
  • Naoki Katoh
    • 2
  • Shin-ichi Tanigawa
    • 2
  1. 1.Department of Computer Science and EngineeringState University of New York at BuffaloBuffaloUSA
  2. 2.Department of Architecture and Architectural SystemsKyoto UniversityJapan

Personalised recommendations