Advertisement

Sequence Alignment Algorithms for Run-Length-Encoded Strings

  • Guan Shieng Huang
  • Jia Jie Liu
  • Yue Li Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)

Abstract

A unified framework is applied to solving various sequence comparison problems for run-length encoded strings. All of these algorithms take O( min {mn′,mn}) time and O( max {m,n}) space, for two strings of lengths m and n, with m′ and n′ runs, respectively. We assume the linear-gap model and make no assumption on the scoring matrices, which maximizes the applicability of these algorithms. The trace (i.e., the way to align two strings) of an optimal solution can also be recovered within the same time and space bounds.

Keywords

Edit Distance Global Alignment Edit Graph Alignment Problem Longe Common Subsequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilher, R.: Geometric Applications of a Matrix-Searching Algorithm. Algorithmica 2(1), 195–208 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Aggarwal, A., Park, J.: Notes on Searching in Multidimensional Monotone Arrays. In: Proceedings of the 29th IEEE Symposium on Foundations of Computer Science (FOCS 1988), pp. 497–512 (1988)Google Scholar
  3. 3.
    Apostolico, A., Atallah, M.J., Larmore, L.L., Mcfaddin, S.: Efficient Parallel Algorithms for String Editing and Related Problems. SIAM Journal on Computing 19(5), 968–988 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Apostolico, A., Landau, G.M., Skiena, S.: Matching for Run-Length Encoded Strings. Journal of Complexity 15(1), 4–16 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Arbell, O., Landau, G.M., Mitchell, J.S.B.: Edit Distance of Run-Length Encoded Strings. Information Processing Letters 83(6), 307–314 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Bein, W.W., Golin, M.J., Larmore, L.L., Zhang, Y.: The Knuth-Yao Quadrangle-Inequality Speedup is a Consequence of Total-Monotonicity. In: Proceedings of the 7th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 31–40 (2006)Google Scholar
  7. 7.
    Benson, G.: A Space Efficient Algorithm for Finding the Best Nonoverlapping Alignment Score. Theoretical Computer Science 145(1–2), 357–369 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Bunke, H., Csirik, J.: An Improved Algorithm for Computing the Edit Distance of Run-Length Coded Strings. Information Processing Letters 54(2), 93–96 (1995)CrossRefzbMATHGoogle Scholar
  9. 9.
    Burkard, R.E., Klinz, B., Rudolf, R.: Perspectives of Monge Properties in Optimization. Discrete Applied Mathematics 70(2), 95–161 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Burkard, R.E.: Monge Properties, Discrete Convexity and Applications. European Journal of Operational Research 176(1), 1–14 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A Subquadratic Sequence Alignment Algorithm for Unrestricted Scoring Matrices. SIAM Journal on Computing 32(6), 1654–1673 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  13. 13.
    Hirschberg, D.S.: A Linear Space Algorithm for Computing Maximal Common Subsequences. Communications of the ACM 18(6), 341–343 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Kannan, S.K., Myers, E.W.: An Algorithm for Locating Nonoverlapping Regions of Maximum Alignment Score. SIAM Journal on Computing 25(3), 648–662 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Kim, J.W., Amir, A., Landau, G.M., Park, K.: Computing Similarity of Run-Length Encoded Strings with Affine Gap Penalty. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 315–326. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Landau, G.M., Ziv-Ukelson, M.: On the Common Substring Alignment Problem. Journal of Algorithms 41(2), 338–359 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Ledergerber, C., Dessimoz, C.: Alignments with Non-overlapping Moves, Inversions and Tandem Duplications in o(n 4) Time. Journal of Combinatorial Optimization (to appear, 2007)Google Scholar
  18. 18.
    Levenshtein, V.I.: Binary Codes Capable of Correcting, Deletions, Insertions and Reversals. Soviet Physics Doklady 10, 707–710 (1966)MathSciNetGoogle Scholar
  19. 19.
    Liu, J.J., Huang, G.S., Wang, Y.L., Lee, R.C.T.: Edit Distance for a Run-Length-Encoded String and an Uncompressed String. Information Processing Letters 105(1), 12–16 (2007)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Liu, J.J., Wang, Y.L., Lee, R.C.T.: Finding a Longest Common Subsequence Between a Run-Length-Encoded String and an Uncompressed String. Journal of Complexity (to appear, 2008)Google Scholar
  21. 21.
    Mäkinen, V., Navarro, G., Ukkonen, E.: Approximate Matching of Run-Length Compressed Strings. Algorithmica 35(4), 347–369 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Mitchell, J.: A Geometric Shortest Path Problem, with Application to Computing a Longest Common Subsequence in Run-Length Encoded Strings. Technical report, SUNY Stony Brook (1997)Google Scholar
  23. 23.
    Schmidt, J.P.: All Highest Scoring Paths in Weighted Grid Graphs and Their Application to Finding All Approximate Repeats in Strings. SIAM Journal on Computing 27(4), 972–992 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Wagner, R.A., Fischer, M.J.: The String-to-String Correction Problem. Journal of the ACM 21(1), 168–173 (1974)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guan Shieng Huang
    • 1
  • Jia Jie Liu
    • 2
  • Yue Li Wang
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Chi Nan UniversityTaiwan
  2. 2.Department of Information ManagementShih Hsin UniversityTaiwan

Personalised recommendations