Isoperimetric Problem and Meta-fibonacci Sequences

  • B. V. S. Bharadwaj
  • L. S. Chandran
  • Anita Das
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)


Let G = (V,E) be a simple, finite, undirected graph. For S ⊆ V, let \(\delta(S,G) = \{ (u,v) \in E : u \in S \mbox { and } v \in V-S \}\) and \(\phi(S,G) = \{ v \in V -S: \exists u \in S\), such that (u,v) ∈ E} be the edge and vertex boundary of S, respectively. Given an integer i, 1 ≤ i ≤ ∣ V ∣, the edge and vertex isoperimetric value at i is defined as b e (i,G) =  min S ⊆ V; |S| = i |δ(S,G)| and b v (i,G) =  min S ⊆ V; |S| = i |φ(S,G)|, respectively. The edge (vertex) isoperimetric problem is to determine the value of b e (i, G) (b v (i, G)) for each i, 1 ≤ i ≤ |V|. If we have the further restriction that the set S should induce a connected subgraph of G, then the corresponding variation of the isoperimetric problem is known as the connected isoperimetric problem. The connected edge (vertex) isoperimetric values are defined in a corresponding way. It turns out that the connected edge isoperimetric and the connected vertex isoperimetric values are equal at each i, 1 ≤ i ≤ |V|, if G is a tree. Therefore we use the notation b c (i, T) to denote the connected edge (vertex) isoperimetric value of T at i.

Hofstadter had introduced the interesting concept of meta-fibonacci sequences in his famous book “Gödel, Escher, Bach. An Eternal Golden Braid”. The sequence he introduced is known as the Hofstadter sequences and most of the problems he raised regarding this sequence is still open. Since then mathematicians studied many other closely related meta-fibonacci sequences such as Tanny sequences, Conway sequences, Conolly sequences etc. Let T 2 be an infinite complete binary tree. In this paper we related the connected isoperimetric problem on T 2 with the Tanny sequences which is defined by the recurrence relation a(i) = a(i − 1 − a(i − 1)) + a(i − 2 − a(i − 2)), a(0) = a(1) = a(2) = 1. In particular, we show that b c (i, T 2) = i + 2 − 2a(i), for each i ≥ 1.

We also propose efficient polynomial time algorithms to find vertex isoperimetric values at i of bounded pathwidth and bounded treewidth graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Millman, V.D.: λ 1, Isoperimetric Inequalities for Graphs and Super Concentrators. Journal of Combinatorial Theory Series B 38, 73–88 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bezrukov, S.L.: Edge Isoperimetric Problems of Graphs. In: Graph Theory and Combinatorial Biology, vol. 7, pp. 157–197. Bolyai Soc. Math. Stud., Budapest (1999)Google Scholar
  3. 3.
    Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger, M., Schroeder, U.-P.: The Congestion of n–cube Layout on a Rectangular Grid. Discrete Mathematics 213, 13–19 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Bodlaender, H.L.: A Tourist Guide Through Treewidth. Acta Cybernetica 11, 1–21 (1993)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bollobás, B.: Combinatorics. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  6. 6.
    Bollobás, B., Leader, I.: Edge-Isoperimetric Inequalities in the Grid. Combinatorica 11, 299–314 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Chandran, L. S., Kavitha, T.: Treewidth and Pathwidth of Hypercubes. Special Issue of Discrete Mathematics on Minimal Separation and Chordal Completion (to appear, 2005)Google Scholar
  8. 8.
    Chandran, L.S., Kavitha, T.: The Carvingwidth of Hypercubes (2006)Google Scholar
  9. 9.
    Chandran, L.S., Subramanian, C.R.: Girth and Treewidth. Journal of Combinatorial Theory Series B 93, 23–32 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Diestel, R.: Graph Theory, 2nd edn. vol. 173. Springer, New York (2000)Google Scholar
  11. 11.
    Guy, R.K.: Some Suspiciously Simple Sequences. Amer. Math. Monthly 93, 186–190 (1986)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Harper, L.: Optimal Assignments of Numbers to Vertices. Jour. Soc. Indust. Appl. Math. 12, 131–135 (1964)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Harper, L.: Optimal Numberings and Isoperimetric Problems on Graphs. Journal of Combinatorial Theory 1, 385–393 (1966)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Harper, L.: On an Isoperimetric Problem for Hamming Graphs. Discrete Applied Mathematics 95, 285–309 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Harper, L.H.: Global Methods for Combinatorial Isoperimetric Problems. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  16. 16.
    Hart, S.: A Note on the Edges of the n–cube. Discrete Mathematics 14, 157–163 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Hofstadter, D., Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books, New york (1979)Google Scholar
  18. 18.
    Houdré, C., Tetali, P.: Isoperimetric Invariants for Product Markov Chains and Graph Products. Combinatorica 24, 359–388 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Jackson, B., Ruskey, F.: Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes. Electron. J. Combin. 13(1); Research Paper 26, p.13 (2006) (electronic)MathSciNetGoogle Scholar
  20. 20.
    Leader, I.: Discrete Isoperimetric Inequalities. In: Proc. Symp. Appl. Math, vol. 44, pp. 57–80 (1991)Google Scholar
  21. 21.
    Otachi, Y., Yamazaki, K.: A Lower Bound for the Vertex Boundary-Width of Complete k-ary Trees. Discrete Mathematics (in Press)Google Scholar
  22. 22.
    Tanny, S.M.: A Well-Behaved Cousin of the Hofstadter Sequence. Discrete Mathematics 105, 227–239 (1992)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • B. V. S. Bharadwaj
    • 1
  • L. S. Chandran
    • 1
  • Anita Das
    • 1
  1. 1.Department of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia

Personalised recommendations