Genome Halving under DCJ Revisited

  • Julia Mixtacki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)


The Genome Halving Problem is the following: Given a rearranged duplicated genome, find a perfectly duplicated genome such that the rearrangement distance between these genomes is minimal with respect to a particular model of genome rearrangement. Recently, Warren and Sankoff studied this problem under the general DCJ model where the pre-duplicated genome contains both, linear and circular chromosomes. In this paper, we revisit the Genome Halving Problem for the DCJ distance and we propose a genome model such that constraints for linear genomes, as well as the ones for circular genomes are taken into account. Moreover, we correct an error in the original paper.


Genome Duplication Ancestral Genome Circular Chromosome Linear Chromosome Genome Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn, S., Tanksley, S.D.: Comparative Linkage Maps of Rice and Maize Genomes. Proc. Natl. Acad. Sci. 90(17), 7980–7984 (1993)CrossRefGoogle Scholar
  2. 2.
    Alekseyev, M., Pevzner, P.: Whole Genome Duplications and Contracted Breakpoint Graphs. SIAM J. Comput. 36(6), 1748–1763 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alekseyev, M., Pevzner, P.: Whole Genome Duplications, Multi-break Rearrangements, and Genome Halving Problem. In: Proceedings of SODA 2007, pp. 665–679 (2007)Google Scholar
  4. 4.
    Bergeron, A., Mixtacki, J., Stoye, J.: A Unifying View of Genome Rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Dehal, P., Boore, J.L.: Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate. PLoS Biology 3(10), 314 (2003)CrossRefGoogle Scholar
  6. 6.
    El-Mabrouk, N.: Reconstructing an Ancestral Genome Using Minimum Segments Duplications and Reversals. J. Comput. Syst. Sci. 65(3), 442–464 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    El-Mabrouk, N., Bryant, D., Sankoff, D.: Reconstructing the Pre-doubling Genome. In: Proceedings of RECOMB 1999, pp. 154–163 (1999)Google Scholar
  8. 8.
    El-Mabrouk, N., Nadeau, J., Sankoff, D.: Genome Halving. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 235–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    El-Mabrouk, N., Sankoff, D.: The Reconstruction of Doubled Genomes. SIAM J. Comput. 32(3), 754–792 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Guyot, R., Keller, B.: Ancestral Genome Duplication in Rice. Genome 47, 610–614 (2004)CrossRefGoogle Scholar
  11. 11.
    Hannenhalli, S., Pevzner, P.: Transforming Men into Mice (polynomial Algorithm for Genomic Distance Problem). In: Proceedings of FOCS 1995, pp. 581–592. IEEE Press, Los Alamitos (1995)Google Scholar
  12. 12.
    Kellis, M., Birren, B.W., Lander, E.S.: Proof and Evolutionary Analysis of Ancient Genome Duplication in the Yeast Saccharomyces Cerevisiae. Nature 428(6983), 617–624 (2004)CrossRefGoogle Scholar
  13. 13.
    Ohno, S.: Ancient Linkage Group and Frozen Accidents. Nature 244, 259–262 (1973)CrossRefGoogle Scholar
  14. 14.
    Warren, R., Sankoff, D.: Genome Halving with Double Cut and Join. In: Proceedings of APBC 2008, Series on Advances in Bioinformatics and Computational Biology, vol. 6 (2008)Google Scholar
  15. 15.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient Sorting of Genomic Permutations by Translocation, Inversion and Block Interchange. Bioinformatics 21(16), 3340–3346 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Julia Mixtacki
    • 1
  1. 1.International NRW Graduate School in Bioinformatics and Genome ResearchUniversität BielefeldGermany

Personalised recommendations