Multi-party Quantum Communication Complexity with Routed Messages

  • Seiichiro Tani
  • Masaki Nakanishi
  • Shigeru Yamashita
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)


This paper describes a general quantum lower bounding technique for the communication complexity of a function that depends on the inputs given to two parties connected via paths, which may be shared with other parties, on a network of any topology. The technique can also be employed to obtain a lower-bound of the quantum communication complexity of some functions that depend on the inputs distributed over all parties on the network. As a typical application, we apply our technique to the distinctness problem of deciding whether there are at least two parties with identical inputs, on a k-party ring; almost matching upper bounds are also given.


Boolean Function Error Probability Communication Complexity Random String Distinct Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aaronson, S., Ambainis, A.: Quantum Search of Spatial Regions. Theory of Computing 1, 47–79 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight Bounds on Quantum Searching. Fortschritte Der Physik 46(4-5), 493–505 (1998)CrossRefGoogle Scholar
  3. 3.
    Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum Amplitude Amplification and Estimation. In: Lomonaco Jr., S.J., Brandt, H.E. (eds.) Quantum Computation and Quantum Information: A Millennium Volume, AMS Contemporary Math. Series, vol.305, pp. 53–74. AMS (2003)Google Scholar
  4. 4.
    Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. Classical Communication and Computation. In: Proc. of 30th Annual ACM Symposium on Theory of Computing (STOC 1998), pp. 63–68. ACM, New York (1998)CrossRefGoogle Scholar
  5. 5.
    Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum Fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)CrossRefGoogle Scholar
  6. 6.
    Frankl, P., Rödl, V.: Forbidden Intersections. Trans. Amer. Math. Soc. 300(1), 259–286 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential Separations for One-Way Quantum Communication Complexity, with Applications to Cryptography. In: Proc. of 39th Annual ACM Symposium on Theory of Computing, pp. 516–525. ACM, New York (2007)Google Scholar
  8. 8.
    Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In: Proc. of 28th Annual ACM Symposium on Theory of Computing (STOC 1996), pp. 212–219. ACM, New York (1996)CrossRefGoogle Scholar
  9. 9.
    Kalyanasundaram, B., Schnitger, G.: The Probabilistic Communication Complexity of Set Intersection. SIAM Journal on Discrete Mathematics 5(4), 545–557 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Klauck, H.: On Quantum and Approximate Privacy. Theory of Computing Systems 37, 221–246 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kremer, I.: Quantum Communication. Master’s thesis, Computer Science Department, The Hebrew University (1995)Google Scholar
  12. 12.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  13. 13.
    Leiserson, C.E., Rivest, R.L., Stein, C., Cormen, T.H.: Introduction to Algorithms. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  14. 14.
    Newman, I.: Private vs. Common Random Bits in Communication Complexity. Information Processing Letters 39, 67–71 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Raz, R.: Exponential Separation of Quantum and Classical Communication Complexity. In: Proc. of 31st Annual ACM Symposium on Theory of Computing (STOC 1999), pp. 358–367. ACM, New York (1999)CrossRefGoogle Scholar
  16. 16.
    Razborov, A.A.: Quantum Communication Complexity of Symmetric Predicates. Izvestiya Mathematics 67(1), 145–159 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tiwari, P.: Lower Bounds on Communication Complexity in Distributed Computer Networks. Journal of the ACM 34(4), 921–938 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Yao, A.C.-C.: Some Complexity Questions Related to Distributed Domputing. In: Proc. of 11th Annual ACM Symposium on Theory of Computing, pp. 209–213 (1979)Google Scholar
  19. 19.
    Yao, A.C.-C.: Quantum Circuit Complexity. In: 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1993), pp. 352–361. IEEE, New York (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Seiichiro Tani
    • 1
  • Masaki Nakanishi
    • 2
  • Shigeru Yamashita
    • 2
  1. 1.NTT Communication Science LaboratoriesNTT Corporation 
  2. 2.Graduate School of Information ScienceNara Institute of Science and Technology 

Personalised recommendations