Quantum Separation of Local Search and Fixed Point Computation

  • Xi Chen
  • Xiaoming Sun
  • Shang-Hua Teng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)


We give a lower bound of Ω (n (d − 1)/2) on the quantum query complexity for finding a fixed point of a discrete Brouwer function over grid [n] d . Our lower bound is nearly tight, as Grover Search can be used to find a fixed point with O(n d/2) quantum queries. Our result establishes a nearly tight bound for the computation of d-dimensional approximate Brouwer fixed points defined by Scarf and by Hirsch, Papadimitriou, and Vavasis. It can be extended to the quantum model for Sperner’s Lemma in any dimensions: The quantum query complexity of finding a panchromatic cell in a Sperner coloring of a triangulation of a d-dimensional simplex with n d cells is Ω(n (d − 1)/2). For d = 2, this result improves the bound of Ω(n 1/4) of Friedl, Ivanyos, Santha, and Verhoeven.

More significantly, our result provides a quantum separation of local search and fixed point computation over [n] d , for d ≥ 4. Aaronson’s local search algorithm for grid [n] d , using Aldous Sampling and Grover Search, makes O (n d/3) quantum queries. Thus, the quantum query model over [n] d for d ≥ 4 strictly separates these two fundamental search problems.


Local Search Point Computation Query Complexity Query Model Quantum Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aaronson, S.: Lower Bounds for Local Search by Quantum Arguments. In: Proc. of the 36th STOC, pp. 465–474 (2004)Google Scholar
  2. 2.
    Aldous, D.: Minimization Algorithms and Random Walk on the d-Cube. Annals of Probability 11(2), 403–413 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ambainis, A.: Quantum Lower Bounds by Quantum Arguments. In: Proc. of the 32nd FOCS, pp. 636–643 (2000)Google Scholar
  4. 4.
    Ambainis, A.: Polynomial Degree vs. Quantum Query Complexity. In: Proc. of the 44th FOCS, pp. 230–239 (2003)Google Scholar
  5. 5.
    Arrow, K., Debreu, G.: Existence of an Equilibrium for a Competitive Economy. Econometrica 22(3), 265–290 (1954)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum Lower Bounds by Polynomials. Journal of ACM 48(4), 778–797 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chen, X., Teng, S.H.: Paths Beyond Local Search: A Tight Bound for Randomized Fixed-Point Computation. In: Proc. of the 48th FOCS, pp. 124–134 (2007)Google Scholar
  8. 8.
    Chen, X., Deng, X.: On Algorithms for Discrete and Approximate Brouwer Fixed Points. In: Proc. of the 37th STOC, pp. 323–330 (2005)Google Scholar
  9. 9.
    Deng, X., Papadimitriou, C., Safra, S.: On the Complexity of Price Equilibria. Journal of Computer and System Sciences 67(2), 311–324 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Friedl, K., Ivanyos, G., Santha, M., Verhoeven, F.: On the Black-Box Complexity of Sperner’s Lemma. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 245–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Grover, L.: A Fast Quantum Mechanical Algorithm for Database Search. In: Proc. of the 28th STOC, pp. 212–219 (1996)Google Scholar
  12. 12.
    Hirsch, M., Papadimitriou, C., Vavasis, S.: Exponential Lower Bounds for Finding Brouwer Fixed Points. Journal of Complexity 5, 379–416 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Iimura, T., Murota, K., Tamura, A.: Discrete Fixed Point Theorem Reconsidered. Journal of Mathematical Economics 41, 1030–1036 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Nash, J.: Equilibrium Point in n-Person Games. Proceedings of the National Academy of the USA 36(1), 48–49 (1950)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Papadimitriou, C.: On Inefficient Proofs of Existence and Complexity Classes. In: Proc. of the 4th Czechoslovakian Symposium on Combinatorics (1991)Google Scholar
  16. 16.
    Santha, M., Szegedy, M.: Quantum and Classical Query Complexities of Local Search are Polynomially Telated. In: Proc. of the 36th STOC, pp. 494–501 (2004)Google Scholar
  17. 17.
    Scarf, H.: The Approximation of Fixed Points of a Continuous Mapping. SIAM Journal on Applied Mathematics 15, 997–1007 (1967)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Scarf, H.: On the Computation of Equilibrium Prices. In: Fellner, W. (ed.) Ten Economic Studies in the Tradition of Irving Fisher. John Wiley & Sons, Chichester (1967)Google Scholar
  19. 19.
    Sun, X., Yao, A.C.: On the Quantum Query Complexity of Local Search in Two and Three dimensions. In: Proc. of the 47th FOCS, pp. 429–438 (2006)Google Scholar
  20. 20.
    Zhang, S.: On the Power of Ambainis’s Lower Bounds. Theoretical Computer Science 339(2-3), 241–256 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhang, S.: New Upper and Lower Bounds for Randomized and Quantum Local Search. In: Proc. of the 38th STOC, pp. 634–643 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Xi Chen
    • 1
  • Xiaoming Sun
    • 2
  • Shang-Hua Teng
    • 3
  1. 1.Institute for Advanced Study 
  2. 2.Tsinghua University 
  3. 3.Boston University 

Personalised recommendations