Advertisement

The Computational Complexity of Link Building

  • Martin Olsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)

Abstract

We study the problem of adding k new links to a directed graph G(V, E) in order to maximize the minimum PageRank value for a given subset of the nodes. We show that this problem is NP-hard if k is part of the input. We present a simple and efficient randomized algorithm for the simple case where the objective is to compute one new link pointing to a given node t producing the maximum increase in the PageRank value for t. The algorithm computes an approximation of the PageRank value for t in G(V, E ∪ {(v, t)}) for all nodes v with a running time corresponding to a small and constant number of PageRank computations.

Keywords

Directed Graph Transition Probability Matrix Group Link PageRank Algorithm Balance Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avrachenkov, K., Litvak, N.: The effect of new links on Google Pagerank. Stochastic Models 22(2), 319–331 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bollen, J., Rodriguez, M.A., Van de Sompel, H.: Journal Status. Scientometrics 69(3), 669–687 (2006)CrossRefGoogle Scholar
  3. 3.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)CrossRefGoogle Scholar
  4. 4.
    Chen, P., Xie, H., Maslov, S., Redner, S.: Finding scientific gems with Googles PageRank algorithm. Informetrics 1(1), 8–15 (2007)CrossRefGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  6. 6.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand (1960)Google Scholar
  7. 7.
    Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  8. 8.
    Langville, A.N., Meyer, C.D.: Updating Markov Chains with an Eye on Google’s PageRank. SIAM J. Matrix Anal. Appl. 27(4), 968–987 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Meho, L.I., Yang, K.: Multi-faceted Approach to Citation-based Quality Assessment for Knowledge Management. In: World Library and Information Congress: 72nd IFLA General Conference and Council (2006)Google Scholar
  10. 10.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical report, Stanford Digital Library Technologies Project (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Martin Olsen
    • 1
  1. 1.MADALGO Department of Computer ScienceUniversity of AarhusAarhus NDenmark

Personalised recommendations