Skip to main content

Robot Simulation of Sensory Integration Dysfunction in Autism with Dynamic Neural Fields Model

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2008 (ICAISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

  • 1625 Accesses

Abstract

This paper applies dynamic neural fields model [1,23,7] to multimodal interaction of sensory cues obtained from a mobile robot, and shows the impact of different temporal aspects of the integration to the precision of movements. We speculate that temporally uncoordinated sensory integration might be a reason for the poor motor skills of patients with autism. Accordingly, we make a simulation of orientation behavior and suggest that the results can be generalized for grasping and other movements that are performed in three dimensional space. Our experiments show that impact of temporal aspects of sensory integration on the precision of movement are concordant with behavioral studies of sensory integration dysfunction and of autism. Our simulation and the robot experiment may suggest ideas for understanding and training the motor skills of patients with sensory integration dysfunction, and autistic patients in particular, and are aimed to help design of games for behavioral training of autistic children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barakova, E.I., Lourens, T.: Event based self-supervised temporal integration for multimodal sensor data. J. Integr. Neurosci. 4(2), 265–282 (2005)

    Article  Google Scholar 

  3. Bays, P.M., Wolpert, D.M.: Computational principles of sensorimotor control that minimize uncertainty and variability. J. Physiol. 578(Pt 2), 387–396 (2007)

    Google Scholar 

  4. Brock, J., Brown, C.C., Boucher, J., Rippon, G.: The temporal binding deficit hypothesis of autism. Dev. Psychopathol. 14(2), 209–224 (2002)

    Article  Google Scholar 

  5. Calvert, G.A., Thesen, T.: Multisensory integration: methodological approaches and emerging principles in the human brain. J. Physiol. Paris 98(1-3), 191–205 (2004)

    Article  Google Scholar 

  6. EPFL education robot, http://www.e-puck.org

  7. Erlhagen, W., Bicho, E.: The dynamic neural field approach to cognitive robotics. J. Neural. Eng. 3(3), R36–R54 (2006)

    Google Scholar 

  8. Erlhagen, W., Schner, G.: Dynamic field theory of movement preparation. Psychol. Rev. 109(3), 545–572 (2002)

    Article  Google Scholar 

  9. Faubel, C., Schner, G.: Fast learning to recognize objects – dynamic fields in label–feature spaces. In: Proceedings of the 5th International Conference On Development and Learning 2006 (2006)

    Google Scholar 

  10. Galambos, R.: A comparison of certain gamma band (40-hz) brain rhythms in cat and man. Induced Rhythms in the Brain, 201–216 (1992)

    Google Scholar 

  11. Gray, C.M., Knig, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213), 334–337 (1989)

    Article  Google Scholar 

  12. Hairston, W.D., Burdette, J.H., Flowers, D.L., Wood, F.B., Wallace, M.T.: Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Exp. Brain Res. 166, 474–480 (2005)

    Article  Google Scholar 

  13. Iarocci, G., McDonald, J.: Sensory integration and the perceptual experience of persons with autism. J. Autism. Dev. Disord. 36(1), 77–90 (2006)

    Article  Google Scholar 

  14. Iossifidis, I., Steinhage, A.: Controlling an 8 dof manipulator by means of neural fields. In: Proceedings of the IEEE Int. Conf. on Field and Service Robotics 2001 (2001)

    Google Scholar 

  15. Krding, K.P., Tenenbaum, J.B.: Causal inference in sensorimotor integration. In: NIPS, pp. 737–744 (2006)

    Google Scholar 

  16. Laurienti, P.J., Kraft, R.A., Maldjian, J.A., Burdette, J.H., Wallace, M.T.: Semantic congruence is a critical factor in multisensory behavioral performance. Exp. Brain Res. 158(4), 405–414 (2004)

    Article  Google Scholar 

  17. Leary, M.R., Hill, D.A.: Moving on: autism and movement disturbance. Ment. Retard. 34(1), 39–53 (1996)

    Google Scholar 

  18. Masterton, B.A., Biederman, G.B.: Proprioceptive versus visual control in autistic children. J. Autism. Dev. Disord. 13(2), 141–152 (1983)

    Article  Google Scholar 

  19. Mustovic, H., Scheffler, K., Salle, F.D., Esposito, F., Neuhoff, J.G., Hennig, J., Seifritz, E.: Temporal integration of sequential auditory events: silent period in sound pattern activates human planum temporale. Neuroimage 20(1), 429–434 (2003)

    Article  Google Scholar 

  20. Nishida, S.: Interactions and integrations of multiple sensory channels in human brain. In: 2006 IEEE International Conference on Multimedia and Expo, pp. 509–512 (2006)

    Google Scholar 

  21. Sauser, E.L., Billard, A.G.: Biologically inspired multimodal integration: Interferences in a human-robot interaction game. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)

    Google Scholar 

  22. Schauer, C., Gross, H.-M.: Design and optimization of amari neural fields for early auditory-visual integration. In: Proceedings 2004 IEEE International Joint Conference on Neural Networks, vol. 4, pp. 2523–2528 (2004)

    Google Scholar 

  23. Schoener, G., Dose, M., Engels, C.: Dynamics of behavior: theory and applications for autonomous robot architectures. Robotics and Autonomous System 16, 213–245 (1995)

    Article  Google Scholar 

  24. Senkowski, D., Talsma, D., Grigutsch, M., Herrmann, C.S., Woldorff, M.G.: Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia 45(3), 561–571 (2007)

    Article  Google Scholar 

  25. Steinhage, A.: The dynamic approach to anthropomorphic robotics. In: Proceedings of the Fourth Portuguese Conference on Automatic Control (2000)

    Google Scholar 

  26. Thelen, E., Schner, G., Scheier, C., Smith, L.B.: The dynamics of embodiment: a field theory of infant perseverative reaching. Behav. Brain Sci. 24(1), 1–34, discussion 34–86 (2001)

    Google Scholar 

  27. van Beers, R.J., Sittig, A.C., van der Gon, J.J.D.: The precision of proprioceptive position sense. Exp. Brain Res. 122(4), 367–377 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chonnaparamutt, W., Barakova, E.I. (2008). Robot Simulation of Sensory Integration Dysfunction in Autism with Dynamic Neural Fields Model. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics