Skip to main content

Regulation of the cell cycle by CDK inhibitors

  • Chapter
Cell Cycle Control

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 22))

Abstract

There are at least four possible ways in which inhibitors of cyclin-dependent kinases (CDKs) might regulate cell cycle progression (Fig. 1). First, they might determine the duration of G1 phase by setting a threshold above which G1 CDK activity must accumulate before initiation of S-phase. In this threshold role, steady-state levels of CDK inhibitors (CKIs) counteract the temporal accumulation of G1 cyclin/CDK complexes. Second, they might act as checkpoints inducing cell cycle arrest transiently when genomic fidelity is threatened. Chromosome damage or inappropriate segregation of chromosomes may induce cell cycle arrest and initiate DNA repair mechanisms or apoptotic programs. Third, CKIs might allow expedient withdrawal of cells from the cell cycle and a concomitant change in cell fate. In some cases, CKIs might not only regulate the withdrawal from the cell cycle but also affect lineage-specific functions. Fourth, they might function as a gatekeeper of quiescence, keeping the GO cell

Four transitions in the cell cycle that can be controlled, in part, by the CKI. The phases of the cell cycle are indicated (G1, S, G2, M, and G0) and the G1 cyclin/CDK complexes are placed according to the time of their first activities during the mitotic cell cycle. The four transitions are the passage of a cell to DNA replication directly from mitosis (1), any time in the cell cycle that has the ability to respond to threats to genomic fidelity (2), during withdrawal from the cell cycle (3), and during re-entry into the cell cycle (4)

from inappropriately resuming proliferation. In some cases, tumors arise from well differentiated and non-mitotic cells that inexplicably return to the cell cycle. Over the last 5 years, biochemical, cellular, and molecular analyses of CKIs have combined with genetic analysis of mutant mice deficient in each CKI to address these possible functions. Our current knowledge of the role of CKI in these decisions and speculations about their roles in developmentally regulated cell cycles are discussed below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PD, Sellers WR, Sharma SK, Wu AD, Nalin CM, Kaelin WG (1996) Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol. Cell Biol. 16: 6623–6633.

    PubMed  CAS  Google Scholar 

  • Agrawal D, Hauser P, McPherson F, Dong F, Garcia A, Pledger WJ (1996) Repression of p27KiP1 synthesis by platelet-derived growth factor in BALB/c 3T3 cells. Mol. Cell Biol. 16: 4327–4336.

    PubMed  CAS  Google Scholar 

  • Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ (1995) Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–557.

    Article  PubMed  CAS  Google Scholar 

  • Buehr M (1997) The primordial germ cells of mammals: some current perspectives. Exp Cell Res 232: 194–207.

    Article  PubMed  CAS  Google Scholar 

  • Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich V, Chao MV, Koff A (1997) Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kipl. Genes Dev 11: 2335–2346.

    Article  PubMed  CAS  Google Scholar 

  • Chan FKM, Zhang J, Cheng L, Shapiro DN, Winoto A (1995) Identification of human and mouse pl9, a novel CDK4 and CDK6 inhibitor with homology to pl6ink4. Mol Cell Biol 15: 2682–2688.

    PubMed  CAS  Google Scholar 

  • Chen IT, Akamatsu M, Smith ML, Lung FDT, Duba D, Roller PR, Fornace AJ, O’Connor PM (1996) Characterization of p21 (Cip1/Waf1) peptide domains required for cyclin E/cdk2 and PCNA interaction. Oncogene 12: 595–607.

    PubMed  CAS  Google Scholar 

  • Chen J, Jackson PK, Kirschner MW, Dutta A (1995) Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 374: 386–388.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Saha P, Kornbluth S, Dynlacht BD, Dutta A (1996) Cyclin-binding motifs are essential for the function of p21CIP1. Mol Cell Biol 16: 4673–4682.

    PubMed  CAS  Google Scholar 

  • Clark JM, Eddy EM (1975) Fine structural observations on the origin and association of primordial germ cells in the mouse. Dev Biol 47: 136–155.

    Article  PubMed  CAS  Google Scholar 

  • Coats S, Flanagan WM, Nourse J, Roberts JM (1996) Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272: 877–880.

    Article  PubMed  CAS  Google Scholar 

  • Correa-Bordes J, Nurse P (1995) p25ruml orders S phase and mitosis by acting as an inhibitor of the p34cdc2 mitotic kinase. Cell 83: 1001–1009.

    Article  PubMed  CAS  Google Scholar 

  • Cross FR (1988) DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol Cell Biol 8: 4675–4684.

    PubMed  CAS  Google Scholar 

  • de Nooj JC, Letendre MA, Kariharan IK (1996) A cyclin-dependent kinase inhibitor, Dacapo, is necessary for timely exit from the cell cycle during Drosophila embryogenesis. Cell 87: 1237–1247.

    Article  Google Scholar 

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leader P (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–684.

    Article  PubMed  CAS  Google Scholar 

  • Eddy EM, Hahnel AC (1983) Establishment of the germ cell line in mammals. In: (eds) McLaren A, Wylie CC. Current problems in germ cell differentiation. Cambridge University Press, Cambridge, pp 41–70.

    Google Scholar 

  • Eddy EM, Clark JM, Gong D, Fenderson BA (1981) Origin and migration of primordial germ cells in mammals. Gamete Res 4: 333–362.

    Article  Google Scholar 

  • Edgar B, Lehner CF (1996) Developmental control of cell cylce regulators: a fly’s perspective. Science 274: 1646–1652.

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potent mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  PubMed  CAS  Google Scholar 

  • Ewen ME, Sluss HK, Whitehouse LL, Livingston DM (1993) TGF beta inhibition of Cdk4 synthesis is linked to cell cycle arrest. Cell 74: 1009–1020.

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Avery PJ (1978) Variability of chimeras and mosaics. J Embryol Exp Morphol 43: 195–219.

    PubMed  CAS  Google Scholar 

  • Fero MI, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai L-H, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM (1996) A syndrome of multi-organ hyperplasia with features of gigantism, tumorigenesis and female sterility in p27Kipl-deficient mice. Cell 85: 733–744.

    Article  PubMed  CAS  Google Scholar 

  • Firpo EJ, Koff A, Soloman MJ, Roberts JM (1994) Inactivation of a Cdk2 inhibitor during interleukin 2-induced proliferation of human T lymphocytes. Mol Cell Biol 14: 4889–4901.

    PubMed  CAS  Google Scholar 

  • Florenes VA, Bhattacharya N, Bani MR, Ben-David Y, Kerbel RS, Slingerland JM (1996) TGF-β mediated G1 arrest in a human melanoma cell line lacking p15INK4B: evidence for cooperation between p21CiP1/WAF1 and p27KiP1. Oncogene 13: 2447–2457.

    PubMed  CAS  Google Scholar 

  • Franklin DS, Xiong Y (1996) Induction of pl8INK4c and its predominant association with CDK4 and CDK6 during myogenic differentiation. Mol Biol Cell 7: 1587–1599.

    PubMed  CAS  Google Scholar 

  • Gardner RL (1983) Origin and differentiation of extraembryonic tissues in the mouse. Int Rev Exp Pathol 24: 63–133.

    PubMed  CAS  Google Scholar 

  • Gardner RL, Lyon MF, Evans EP, Burtenshaw MD (1985) Conal analysis of X-chromosome inactivation and the origin of the germ line in the mouse embryo. J Embryol Exp Morphol 88: 349–363.

    PubMed  CAS  Google Scholar 

  • Gray-Bablin J, Rao S, Keyomarsi K (1997) Lovastatin induction of cyclin-dependent kinase inhibitors in human breast cells occurs in a cell cycle-independent fashion. Cancer Res 57: 604–609.

    PubMed  CAS  Google Scholar 

  • Gu Y, Turck CW, Morgan DO (1993) Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366: 707–710.

    Article  PubMed  CAS  Google Scholar 

  • Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O’Keefe CL, Matera AG, Xiong Y (1994) Growth suppression by pl8, a p16INK4/MTS1-and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 8: 2939–2952.

    Article  PubMed  CAS  Google Scholar 

  • Guan KL, Jenkins CW, Li Y, O’Keefe CL, Noh S, Wu X, Zariwala M, Matera AG, Xiong Y (1996) Isolation and characterization of p19INK4d, a p16-related inhibitor specific to CDK6 and CDK4. Mol Biol Cell 7: 57–70.

    PubMed  CAS  Google Scholar 

  • Gulbis JM, Kelman Z, Hurwitz J, O’Donnell M, Kuriyan J (1996) Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87: 297–306.

    Article  PubMed  CAS  Google Scholar 

  • Hahnel AC, Rappolee DA, Millan JL, Manes T, Ziomek CA, Theodosiou NG, Werb Z, Pederson RA, Schultz GA (1990) Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development 110: 555–564.

    PubMed  CAS  Google Scholar 

  • Hakem R, de la Pompa JL, Sirard C, Mo R, Woo M, Hakem A, Wakeham A, Potter J, Reitmair A, Billia F, Firpo E, Hui CC, Roberts J, Rossant J, Mak TW (1996) The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85: 1009–1023.

    Article  PubMed  CAS  Google Scholar 

  • Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267: 1018–1021.

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-b-induced cell cycle arrest. Nature 371: 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G (1996) Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 16: 859–867.

    PubMed  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of Gl cyclin-dependent kinases. Cell 75: 805–816.

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell-Crowley L, Swindell E, Fox MP, Wei N (1995) Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 6: 387–400.

    PubMed  CAS  Google Scholar 

  • Hatekayama H, Weinberg RA (1995) The role of Rb in cell cycle control. In: Meijier L, Guidet S, and Tung HYL (eds) Progress in cell cycle research, vol. 1, Plenum Press, New York, pp 9–19.

    Google Scholar 

  • Hauser PJ, Agrawal D, Flanagan M, Pledger WJ (1997) The role of p27KiP1 in the in vitro differentiation of murine keratinocytes. Cell Growth Diff 8: 203–211.

    PubMed  CAS  Google Scholar 

  • Hirai H, Roussel MF, Kato JY, Ashmun RA, Sherr CJ (1995) Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol Cell Biol 15: 2672–2681.

    PubMed  CAS  Google Scholar 

  • Hirama T, Koeffler HP (1995) Roles of the cyclin-dependent kinase inhibitors in the development of cancer. Blood 86: 841–854.

    PubMed  CAS  Google Scholar 

  • Hoffman ES, Passoni L, Crompton T, Leu TMJ, Schatz DG, Koff A, Owen MJ, Hayday AC (1996) Productive T-cell receptor β-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev 10: 948–962.

    Article  PubMed  CAS  Google Scholar 

  • Hogan B, Beddington R, Constantini F, Lacy E. (1994) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussey C, Tran T, Miki Y, Weaver-Feldhaus J, et al. (1994) Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet 8: 23–26.

    Article  PubMed  CAS  Google Scholar 

  • Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ (1993) Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 7: 331–342.

    Article  PubMed  CAS  Google Scholar 

  • Kipreos ET, Lander LE, Wing JP, Wu HW, Hedgecock EM (1996) cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85: 829–839.

    Article  PubMed  CAS  Google Scholar 

  • Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman E, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A (1996) Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27KiP1. Cell 85: 721–732.

    Article  PubMed  CAS  Google Scholar 

  • Knoblich JA, Sauer K, Jones L, Richardson H, Saint R, Lehner CF (1994) Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77: 107–120.

    Article  PubMed  CAS  Google Scholar 

  • Koff A, Ohtsuki M, Polyak K, Roberts JM, Massaque J (1993) Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-β. Science 260: 536–538.

    Article  PubMed  CAS  Google Scholar 

  • LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11: 847–862.

    Article  PubMed  CAS  Google Scholar 

  • Labib K, Moreno S, Nurse P (1995) Interaction of cdc2 and rum 1 regulates Start and S phase in fission yeast. J Cell Sci 108: 3285–3294.

    PubMed  CAS  Google Scholar 

  • Lane ME, Saeur K, Wallace K, Jan JY, Lehner CF, Vaessin H (1996) Dacapo, a cyclin-dependent kinase inhibitor, stops cell proliferation during Drosophila development. Cell 87: 1225–1235.

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Reynisdottir I, Massague J (1995) Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 9: 639–649.

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Hurwitz J, Massague J (1995) Cell-cycle inhibition by independent CDK and PCNA binding domains in p21CiP1. Nature 375: 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Marx SO, Kiyokawa H, Koff A, Massague J, Marks A (1996) Rapamycin resistance tied to defective regulation of p27KiP1. Mol Cell Biol 16: 6744–6751.

    PubMed  CAS  Google Scholar 

  • Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ (1995) p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9: 650–662.

    Article  PubMed  CAS  Google Scholar 

  • Medema RH, Herrera RE, Lam F, Weinberg RA (1995) Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci USA 92: 6289–6293.

    Article  PubMed  CAS  Google Scholar 

  • Missero C, Di Cunto F, Kiyokawa H, Koff A, Dotto GP (1996) The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev 10: 3065–3075.

    Article  PubMed  CAS  Google Scholar 

  • Moreno S, Nurse P (1994) Regulation of progression through the G1 phase of the cell cycle by the rum1+ gene. Nature 367: 236–242.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama KI (1996) Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85: 707–720.

    Article  PubMed  CAS  Google Scholar 

  • Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98.

    Article  PubMed  CAS  Google Scholar 

  • Ohtusbo M, Roberts JM (1993) Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259: 1908–1912.

    Article  Google Scholar 

  • Pan ZQ, Reardon JT, Li L, Flores-Rozas H, Legerski R, Sancar A, Hurwitz J (1995) Inhibition of nucleotide excision repair by the cyclin-dependent kinase inhibitor p21. J Biol Chem 270: 22008–22016.

    Article  PubMed  CAS  Google Scholar 

  • Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW, Elledge SJ (1995) p53-independent expression of p21CiP1 in muscle and other terminally differentiating cells. Science 267: 1024–1027.

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Kato JY, Soloman MJ, Sherr CJ, Massague J, Roberts JM, Koff A (1994a) p27KIP1, a cyclin-Cdk inhibitor, links transforming growth factor-b and contact inhibition to cell cycle arrest. Genes Dev 8: 9–22.

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J (1994b) Cloning of p27KIP1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78: 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Poon RYC, Toyshima H, Hunter T (1995) Redistribution of the CDK inhibitor p27 between different cyclin-CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation. Mol Biol Cell 6: 1197–1213.

    PubMed  CAS  Google Scholar 

  • Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995a) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993–1000.

    Article  PubMed  CAS  Google Scholar 

  • Quelle DE, Ashmun RA, Hannon GJ, Rehberger PA, Trono D, Richter KH, Walker C, Beach D, Sherr CJ, Serrano M (1995b) Cloning and characterization of murine pl6INK4a and p15INK4b genes. Oncogene 11: 635–645.

    PubMed  CAS  Google Scholar 

  • Reynisdottir I, Massague J (1997) The subcellular locations of p15Ink4b and p27KiP1 coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev 11: 492–503.

    Article  PubMed  CAS  Google Scholar 

  • Reynisdottir I, Polyak K, Iavarone A, Massague J (1995) Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev 9: 1831–1845.

    Article  PubMed  CAS  Google Scholar 

  • Russo AA, Jeffrey PD, Patten AK, Massague J, Pavletich NP (1996) Crystal structure of the p27KiP1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382: 325–331.

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclinD/CDK4. Nature 366: 704–707.

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Lee H-W, Chin L, Cordon-Cardo C, Beach D, DePinho RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85: 27–37.

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9: 1149–1163.

    Article  PubMed  CAS  Google Scholar 

  • Snow MHL (1977) Gastrulation in the mouse: growth and regionalization of the epiblast. J Embryol Exp Morphol 42: 293–303.

    Google Scholar 

  • Soos TJ, Kiyokawa H, Yan JS, Rubin MS, Giordano A, DeBlasio A, Bottega S, Wong B, Mendelsohn J, Koff A (1996) Formation of p27-CDK complexes during the human mitotic cell cycle. Cell Growth Diff 7: 135–146.

    PubMed  CAS  Google Scholar 

  • Tarn PPL, Snow MHL (1981) Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morphol 64: 133–147.

    Google Scholar 

  • Tarn SW, Shay JW, Pagano M (1994) Differential expression and cell cycle regulation of the cyclin-dependent kinase 4 inhibitor p16Ink4. Cancer Res 54: 5816–5820.

    Google Scholar 

  • Toyoshima H, Hunter T (1994) p27, a novel inhibitor of Gl cyclin-Cdk protein kinase activity, is related to p21. Cell 78: 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Waga S, Hannon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369: 574–578.

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993a) p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704.

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Zhang H, Beach D (1993b) Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes & Dev. 7: 1572–1583.

    Article  CAS  Google Scholar 

  • Yan Y, Frisen J, Lee MH, Massague J, Barbacid M (1997) Ablation of the CDK inhibitor p57KiP2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 11: 973–983.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Xiong Y, Beach D (1993) Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell 4: 897–906.

    PubMed  CAS  Google Scholar 

  • Zhang H, Hannon GJ, Beach D (1994) p21-containing cyclin kinases exist in both active and inactive states. Genes Dev 8: 1750–1758.

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ (1997) Altered cell differentiation and proliferation in mice lacking p57KiP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387: 151–158.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soos, T.J., Park, M., Kiyokawa, H., Koff, A. (1998). Regulation of the cell cycle by CDK inhibitors. In: Pagano, M. (eds) Cell Cycle Control. Results and Problems in Cell Differentiation, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69686-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69686-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21695-8

  • Online ISBN: 978-3-540-69686-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics