External Dynamical Equivalence of Analytic Control Systems

  • Zbigniew Bartosiewicz
  • Ewa Pawłuszewicz


Theory of systems on homogeneous time scales unifies theories of continuous-time and discrete-time systems. The characterizations of external dynamical equivalence known for continuous-time and discrete-time systems are extended here to systems on time scales. Under assumption of uniform observability, it is shown that two analytic control systems with output are externally dynamically equivalent if and only if their delta universes are isomorphic. The delta operator associated to the system on a time scale is a generalization of the differential operator associated to a continuous-time system and of the difference operator associated to a discrete-time system.


Function Universe Dynamic Feedback Delta Operator Analytic Control System Uniform Observability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    . Bartosiewicz Z, Johnson J (1994) Systems on universe spaces. Acta Applicandae Mathematicae 34.Google Scholar
  2. 2.
    Bartosiewicz Z, Jakubczyk B, Pawluszewicz E (1994) Dynamic feedback equiv alence of nonlinear discrete-time systems. In: Proceedings of First International Symposium on Mathematical Models in Automation and Robotics, Sept. 1–3, 1994, Miedzyzdroje, Poland, Tech. Univ. of Szczecin Press, Szczecin.Google Scholar
  3. 3.
    . Bartosiewicz Z, Pawluszewicz E (1998) External equivalence of unobservable discrete-time systems. In: Proceedings of NOLCOS’98Enschede, Netherlands, July 1998.Google Scholar
  4. 4.
    Bartosiewicz Z, Pawluszewicz E (2004) Unification of continuous-time and discrete-time systems: the linear case. In: Proceedings of Sixteenth International Symposium on Mathematical Theory of Networks and Systems (MTNS2004) Katholieke Universiteit Leuven, Belgium July 5–9, 2004, Leuven.Google Scholar
  5. 5.
    . Bartosiewicz Z, Pawluszewicz E (2005) Dynamic feedback equivalence of non linear systems on time scales. In: Proceedings of 16th IFAC Congress, Prague (CD-ROM).Google Scholar
  6. 6.
    . Bartosiewicz Z, Pawluszewicz E (2006) Realizations of linear control systems on time scales. Control & Cybernetics, 35(4).Google Scholar
  7. 7.
    Bohner M, Peterson A (2001) Dynamic Equation on Time Scales. Birkhäuser, Boston Basel Berlin.Google Scholar
  8. 8.
    Charlet B, Levine J, Marino R (1991) Sufficient conditions for dynamic state feedback linearization. SIAM J. Control and Optimization 29:38–57.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fausett LV, Murty KN (2004) Controllability, observability and realizability criteria on time scale dynamical systems. Nonlinear Stud. 11:627–638.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Fliess M, Lévine J, Martin Ph, Rouchon P (1992) Sur les systèmes non linéaires différentiellement plats. C. R. Acad. Sci. Paris Sér. I Math., 315(5):619–624.zbMATHGoogle Scholar
  11. 11.
    . Goodwin GC, Graebe SF, Salgado ME (2001) Control System Design. Prentice Hall International.Google Scholar
  12. 12.
    Gürses M, Guseinov GSh, Silindir B (2005) Integrable equations on time scales. Journal of Mathematical Physics 46:113–510.CrossRefGoogle Scholar
  13. 13.
    . Hilger S (1988) Ein Maßkettenkalkülmit Anwendung auf Zentrumsmannig faltigkeiten. Ph.D. thesis, Universität Würzburg, Germany External Dynamical Equivalence 69.Google Scholar
  14. 14.
    Jakubczyk B (1992) Remarks on equivalence and linearization of nonlinear systems. In: Proceedings of the 2nd IFAC NOLCOS Symposium, 1992, Bordeaux, France, 393–397.Google Scholar
  15. 15.
    . Jakubczyk B (1992) Dynamic feedback equivalence of nonlinear control systems. Preprint.Google Scholar
  16. 16.
    . Johnson J (1986) A generalized global differential calculus I. Cahiers Top. et Geom. Diff. XXVII.Google Scholar
  17. 17.
    . Martin Ph, Murray RM, Rouchon P (1997) In: Bastin G, Gevers M (Eds) Flat systems. Plenary Lectures and Mini-Courses, European Control Conference ECC’97, Brussels.Google Scholar
  18. 18.
    Middleton RH, Goodwin GC (1990) Digital Control and Estimation: A Unified Approach. Englewood Cliffs, NJ: Prentice Hall.zbMATHGoogle Scholar
  19. 19.
    Pawluszewicz E (1996) Dynamic linearization of input-output discrete-time systems. In: Proceedings of the International Conference UKACC Control’96, Exeter, UK.Google Scholar
  20. 20.
    Pawluszewicz E, Bartosiewicz Z (1999) External Dynamic Feedback Equivalence of Observable Discrete-time Control Systems. Proc. of Symposia in Pure Mathematics, vol. 64, American Mathematical Society, Providence, Rhode Island.Google Scholar
  21. 21.
    Pawluszewicz E, Bartosiewicz Z (2003) Differential universes in external dynamic linearization. Proceedings of European Control Conference ECC’03, Cambridge, UK.Google Scholar
  22. 22.
    Pomet J-B (1995) A differential geometric setting for dynamic equivalence and dynamic linearization, in: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publications, vol. 32, Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Zbigniew Bartosiewicz
    • 1
  • Ewa Pawłuszewicz
    • 1
  1. 1.Faculty of Computer SciencesBiałystok Technical UniversityBiałystokPoland

Personalised recommendations