Skip to main content

Carleman Linearization of Linearly Observable Polynomial Systems

  • Chapter
Mathematical Control Theory and Finance

Summary

Carleman linearization is used to transform a polynomial control system with output, defined on n-dimensional space, into a linear or bilinear system evolving in the space of infinite sequences. Such a system is described by infinite matrices with special properties. Linear observability of the original system is studied. It means that all coordinate functions can be expressed as linear combinations of functions from the observation space. It is shown that this property is equivalent to a rank condition involving matrices that appear in the Carleman linearization. This condition is equivalent to observability of the first n coordinates of the linearized system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. . Banach S (1932) Théorie des opérations linéaires, Warsaw.

    Google Scholar 

  2. . Bartosiewicz Z (1986) Realizations of olynomial systems, In: Fliess M, Hazewinkel M, Reidel D (eds) Algebraic and Geometric Methods in Nonlinear Control Theory, Dordrecht.

    Google Scholar 

  3. Bartosiewicz Z, Mozyrska D (2001) Observability of infinite-dimensional finitely presented discrete-time linear systems. Zeszyty Naukowe Politechniki Bialostockiej, Matematyka-Fizyka-Chemia 20:5–14.

    Google Scholar 

  4. . Bartosiewicz Z, Mozyrska D (2005) Observability of row-finite countable systems of linear differential equations. In: Proceedings of 16th IFAC Congress, 4–8 July 2005, Prague.

    Google Scholar 

  5. Chen G, Dora JD (1999) Rational normal form for dynamical systems by Carleman linearization. In Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation 165–172, Vancouver, British Columbia, Canada.

    Chapter  Google Scholar 

  6. Curtain RF, Pritchard AJ (1978) Infinite Dimensional Linear Systems Theory, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  7. . Deimling R (1977) Ordinary Differential Equations in Banach Spaces, Lecture Notes in Mathematics, vol. 596, Springer-Verlag.

    Google Scholar 

  8. . Elliott DL (1999) Bilinear Systems, Encyclopedia of Electrical Engineering, edited by John Webster; J. Wiley and Sons.

    Google Scholar 

  9. Fliess M, Kupka I (1983) A finiteness criterion for nonlinear input-output differential systems. SIAM J. Control Optim. 21(5):721–728.

    Article  MATH  MathSciNet  Google Scholar 

  10. Herzog G (1998) On Lipschitz conditions for ordinary differential equations in Fréchet spaces, Czech. Math. J. 48: 95–103.

    Article  MATH  Google Scholar 

  11. Jakubczyk B (1992) Remarks on equivalence and linearization of nonlinear systems. In: Proc. Nonlinear Control Systems Design Symposium, Bordeaux, France.

    Google Scholar 

  12. Kowalski K, Steeb WH (1991) Nonlinear dynamical systems and Carleman linearization. World Scientific Publishing Co. Pte. Ltd., Singapore.

    MATH  Google Scholar 

  13. Lemmert R (1986) On ordinary differential equations in locally convex spaces. Nonlinear Anal. 10:1385–1390.

    Article  MATH  MathSciNet  Google Scholar 

  14. . Moszynski K, Pokrzywa A (1974) Sur les systémes infinis d’équations différentielles ordinaires dans certain espaces de Fréchet. Dissert. Math. 115.

    Google Scholar 

  15. Mozyrska D, Bartosiewicz Z (2000) Local observability of systems on R∞. In: Proceedings of MTNS’2000, Perpignan, France.

    Google Scholar 

  16. Mozyrska D (2000) Local observability of infinitely-dimensional finitely presented dynamical systems with output (in Polish), Ph.D. thesis, Technical University of Warsaw, Poland.

    Google Scholar 

  17. . Mozyrska D, Bartosiewicz Z (2006) Dualities for linear control differential systems with infinite matrices. Control & Cybernetics, vol. 35.

    Google Scholar 

  18. . Sen P (1981) On the choice of input for observability in bilinear systems. IEEE Transactions on Automatic Control. vol.AC-26 no. 2.

    Google Scholar 

  19. . Zhou Y, Martin C (2003) Carleman linearization of linear systems with polynomial output. Report 2002/2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mozyrska, D., Bartosiewicz, Z. (2008). Carleman Linearization of Linearly Observable Polynomial Systems. In: Sarychev, A., Shiryaev, A., Guerra, M., Grossinho, M.d.R. (eds) Mathematical Control Theory and Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69532-5_17

Download citation

Publish with us

Policies and ethics