Development and Selection of Vα14i NKT Cells

  • H. R. MacDonald
  • M. P. Mycko
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 314)


Major Histocompatibility Complex Class Signaling Lymphocytic Activation Molecule CD1d Tetramer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bendelac A (1995) Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med 182:2091–2096PubMedCrossRefGoogle Scholar
  2. 2.
    Bendelac A, Killeen N, Littman DR, Schwartz RH (1994) A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263:1774–1778PubMedCrossRefGoogle Scholar
  3. 3.
    Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A (2002) A thymic precursor to the NKT cell lineage. Science 296:553–555PubMedCrossRefGoogle Scholar
  4. 4.
    Benlagha K, Wei DG, Veiga J, Teyton L, Bendelac A (2005) Characterization of the early stages of thymic NKT cell development. J Exp Med 202:485–492PubMedCrossRefGoogle Scholar
  5. 5.
    Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191:1895–1903PubMedCrossRefGoogle Scholar
  6. 6.
    Bezbradica JS, Hill T, Stanic AK, Van Kaer L, Joyce S (2005) Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+8+ stage of thymic ontogeny. Proc Natl Acad Sci U S A 102:5114–119PubMedCrossRefGoogle Scholar
  7. 7.
    Borowski C, Bendelac A (2005) Signaling for NKT cell development: the SAP-FynT connection. J Exp Med 201:833–836PubMedCrossRefGoogle Scholar
  8. 8.
    Cannons JL, Yu LJ, Hill B, Mijares LA, Dombroski D, Nichols KE, Antonellis A, Koretzky GA, Gardner K, Schwartzberg PL (2004) SAP regulates T(H)2 differentiation and PKC-theta-mediated activation of NF-kappaB1. Immunity 21:693–706PubMedCrossRefGoogle Scholar
  9. 9.
    Cannons JL, Yu LJ, Jankovic D, Crotty S, Horai R, Kirby M, Anderson S, Cheever AW, Sher A, Schwartzberg PL (2006) SAP regulates T cell-mediated help for humoral immunity by a mechanism distinct from cytokine regulation. J Exp Med 203:1551–165PubMedCrossRefGoogle Scholar
  10. 10.
    Chun T, Page MJ, Gapin L, Matsuda JL, Xu H, Nguyen H, Kang HS, Stanic AK, Joyce S, Koltun WA, Chorney MJ, Kronenberg M, Wang CR (2003) CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J Exp Med 197:907–918PubMedCrossRefGoogle Scholar
  11. 11.
    Chung B, Aoukaty A, Dutz J, Terhorst C, Tan R (2005) Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J Immunol 174:3153–3157PubMedGoogle Scholar
  12. 12.
    Coles MC, Raulet DH (2000) NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J Immunol 164:2412–2418PubMedGoogle Scholar
  13. 13.
    Dao T, Guo D, Ploss A, Stolzer A, Saylor C, Boursalian TE, Im JS, Sant’Angelo DB (2004) Development of CD1d-restricted NKT cells in the mouse thymus. Eur J Immunol 34:3542–3552PubMedCrossRefGoogle Scholar
  14. 14.
    Eberl G, Lowin-Kropf B, MacDonald HR (1999) Cutting edge: NKT cell development is selectively impaired in Fyn-deficient mice. J Immunol 163:4091–4094PubMedGoogle Scholar
  15. 15.
    Egawa T, Eberl G, Taniuchi I, Benlagha K, Geissmann F, Hennighausen L, Bendelac A, Littman DR (2005) Genetic evidence supporting selection of the Valpha14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22:705–716PubMedCrossRefGoogle Scholar
  16. 16.
    Elewaut D, Shaikh RB, Hammond KJ, De Winter H, Leishman AJ, Sidobre S, Turovskaya O, Prigozy TI, Ma L, Banks TA, Lo D, Ware CF, Cheroutre H, Kronenberg M (2003) NIK-dependent RelB activation defines a unique signaling pathway for the development of V alpha 14i NKT cells. J Exp Med 197:1623–1633PubMedCrossRefGoogle Scholar
  17. 17.
    Gadola SD, Silk JD, Jeans A, Illarionov PA, Salio M, Besra GS, Dwek R, Butters TD, Platt FM, Cerundolo V (2006) Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. J Exp Med 203:2293–2303PubMedCrossRefGoogle Scholar
  18. 18.
    Gadue P, Morton N, Stein PL (1999) The Src family tyrosine kinase Fyn regulates natural killer T cell development. J Exp Med 190:1189–1196PubMedCrossRefGoogle Scholar
  19. 19.
    Gadue P, Stein PL (2002) NKT cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation. J Immunol 169:2397–2406PubMedGoogle Scholar
  20. 20.
    Gadue P, Yin L, Jain S, Stein PL (2004) Restoration of NKT cell development in fyn-mutant mice by a TCR reveals a requirement for Fyn during early NKT cell ontogeny. J Immunol 172:6093–6100PubMedGoogle Scholar
  21. 21.
    Gapin L, Matsuda JL, Surh CD, Kronenberg M (2001) NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2:971–978PubMedCrossRefGoogle Scholar
  22. 22.
    Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625–636PubMedCrossRefGoogle Scholar
  23. 23.
    Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier K, Sedger L, Willis CR, Brasel K, Morrissey PJ, Stocking K, Schuh JC, Joyce S, Peschon JJ (2000) Reversible defects in natural killer and memory CD8. T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771–780PubMedCrossRefGoogle Scholar
  24. 24.
    Konishi J, Iwabuchi K, Iwabuchi C, Ato M, Nagata JI, Onoe K, Nakagawa KI, Kasai M, Ogasawara K, Kawakami K (2000) Thymic epithelial cells responsible for impaired generation of NK-T thymocytes in Alymphoplasia mutant mice. Cell Immunol 206:26–35PubMedCrossRefGoogle Scholar
  25. 25.
    Lees RK, Ferrero I, MacDonald HR (2001) Tissue-specific segregation of TCRgamma delta+ NKT cells according to phenotype TCR repertoire and activation status: parallels with TCR alphabeta+ NKT cells. Eur J Immunol 31:2901–2909PubMedCrossRefGoogle Scholar
  26. 26.
    Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, Ma A (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9:669–676PubMedCrossRefGoogle Scholar
  27. 27.
    MacDonald HR (2002) Immunology. T before NK. Science 296:481–482PubMedCrossRefGoogle Scholar
  28. 28.
    MacDonald HR (2002) Development and selection of NKT cells. Curr Opin Immunol 14:250–254PubMedCrossRefGoogle Scholar
  29. 29.
    MacDonald HR, Schumann J (2005) The need for natural killer T cells. Nat Med 11:256–257PubMedCrossRefGoogle Scholar
  30. 30.
    Makino Y, Yamagata N, Sasho T, Adachi Y, Kanno R, Koseki H, Kanno M, Taniguchi M (1993) Extrathymic development of V alpha 14-positive T cells. J Exp Med 177:1399–1408PubMedCrossRefGoogle Scholar
  31. 31.
    Matsuda JL, Gapin L (2005) Developmental program of mouse Valpha14i NKT cells. Curr Opin Immunol 17:122–130PubMedCrossRefGoogle Scholar
  32. 32.
    Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192:741–754PubMedCrossRefGoogle Scholar
  33. 33.
    Matsuda JL, Zhang Q, Ndonye R, Richardson SK, Howell AR, Gapin L (2006) T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood 107:2797–2805PubMedCrossRefGoogle Scholar
  34. 34.
    Minagawa M, Watanabe H, Miyaji C, Tomiyama K, Shimura H, Ito A, Ito M, Domen J, Weissman IL, Kawai K (2002) Enforced expression of Bcl-2 restores the number of NK cells, but does not rescue the impaired development of NKT cells or intraepithelial lymphocytes, in IL-2/IL-15 receptor beta-chain-deficient mice. J Immunol 169:4153–4160PubMedGoogle Scholar
  35. 35.
    Nakagawa K, Iwabuchi K, Ogasawara K, Ato M, Kajiwara M, Nishihori H, Iwabuchi C, Ishikura H, Good RA, Onoe K (1997) Generation of NK1.1+ T cell antigen receptor alpha/beta+ thymocytes associated with intact thymic structure. Proc Natl Acad Sci U S A 94:2472–2477PubMedCrossRefGoogle Scholar
  36. 36.
    Nichols KE, Hom J, Gong SY, Ganguly A, Ma CS, Cannons JL, Tangye SG, Schwartzberg PL, Koretzky GA, Stein PL (2005) Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med 11:340–345PubMedCrossRefGoogle Scholar
  37. 37.
    Ohteki T, Ho S, Suzuki H, Mak TW, Ohashi PS (1997) Role for IL-15/IL-15 receptor beta-chain in natural killer 1.1+ T cell receptor-alpha beta+ cell development. J Immunol 159:5931–5935PubMedGoogle Scholar
  38. 38.
    Ohteki T, MacDonald HR (1994) Major histocompatibility complex class I related molecules control the development of CD4+8 and CD48 subsets of natural killer 1.1+ T cell receptor-alpha/beta+ cells in the liver of mice. J Exp Med 180:699–704PubMedCrossRefGoogle Scholar
  39. 39.
    Ohteki T, Yoshida H, Matsuyama T, Duncan GS, Mak TW, Ohashi PS (1998) The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-alpha/beta+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J Exp Med 187:967–972PubMedCrossRefGoogle Scholar
  40. 40.
    Pasquier B, Yin L, Fondaneche MC, Relouzat F, Bloch-Queyrat C, Lambert N, Fischer A, de Saint-Basile G, Latour S (2005) Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J Exp Med 201:695–701PubMedCrossRefGoogle Scholar
  41. 41.
    Pellicci DG, Hammond KJ, Uldrich AP, Baxter AG, Smyth MJ, Godfrey DI (2002) A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1(−)CD4(+) CD1d-dependent precursor stage J Exp Med 195:835–844PubMedCrossRefGoogle Scholar
  42. 42.
    Pellicci DG, Uldrich AP, Kyparissoudis K, Crowe NY, Brooks AG, Hammond KJ, Sidobre S, Kronenberg M, Smyth MJ, Godfrey DI (2003) Intrathymic NKT cell development is blocked by the presence of alpha-galactosylceramide. Eur J Immunol 33:1816–1823PubMedCrossRefGoogle Scholar
  43. 43.
    Prussin C, Foster B (1997) TCRV alpha 24 and V beta 11 coexpression defines a human NK1. T cell analog containing a unique Th0 subpopulation. J Immunol 159:5862–5870PubMedGoogle Scholar
  44. 44.
    Robson MacDonald H, Lees RK, Held W (1998) Developmentally regulated extinction of Ly-49 receptor expression permits maturation and selection of NK1.1+ T cells. J Exp Med 187:2109–2114PubMedCrossRefGoogle Scholar
  45. 45.
    Sato H, Nakayama T, Tanaka Y, Yamashita M, Shibata Y, Kondo E, Saito Y, Taniguchi M (1999) Induction of differentiation of pre-NKT cells to mature Valpha14. NKT cells by granulocyte/macrophage colony-stimulating factor. Proc Natl Acad Sci U S A 96:7439–7444PubMedCrossRefGoogle Scholar
  46. 46.
    Schmidt-Supprian M, Tian J, Grant EP, Pasparakis M, Maehr R, Ovaa H, Ploegh HL, Coyle AJ, Rajewsky K (2004) Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-kappaB activation. Proc Natl Acad Sci U S A 101:4566–4571PubMedCrossRefGoogle Scholar
  47. 47.
    Schumann J, Mycko MP, Dellabona P, Casorati G, MacDonald HR (2006) Cutting edge: influence of the TCRVbeta domain on the selection of semi-invariant NKT cells by endogenous ligands. J Immunol 176:2064–2068PubMedGoogle Scholar
  48. 48.
    Schumann J, Pittoni P, Tonti E, Macdonald HR, Dellabona P, Casorati G (2005) Targeted expression of human CD1d in transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of Valpha14i NKT cells. J Immunol 175:7303–7310PubMedGoogle Scholar
  49. 49.
    Schumann J, Voyle RB, Wei BY, MacDonald HR (2003) Cutting edge: influence of the TCRV beta domain on the avidity of CD1d:alpha-galactosylceramide binding by invariant V alpha 14. NKT cells. J Immunol 170:5815–5819PubMedGoogle Scholar
  50. 50.
    Shimamura M, Ohteki T, Beutner U, MacDonald HR (1997) Lack of directed V alpha 14-J alpha 281 rearrangements in NK1+T cells. Eur J Immunol 27:1576–1579PubMedCrossRefGoogle Scholar
  51. 51.
    Shinkura R, Kitada K, Matsuda F, Tashiro K, Ikuta K, Suzuki M, Kogishi K, Serikawa T, Honjo T (1999) Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat Genet 22:74–77PubMedCrossRefGoogle Scholar
  52. 52.
    Singer A (2002) New perspectives on a developmental dilemma: the kinetic signaling model and the importance of signal duration for the CD4/CD8 lineage decision. Curr Opin Immunol 14:207–215PubMedCrossRefGoogle Scholar
  53. 53.
    Sivakumar V, Hammond KJ, Howells N, Pfeffer K, Weih F (2003) Differential requirement for Rel/nuclear factor kappa B family members in natural killer T cell development. J Exp Med 197:1613–1621PubMedCrossRefGoogle Scholar
  54. 54.
    Stanic AK, Bezbradica JS, Park JJ, Matsuki N, Mora AL, Van Kaer L, Boothby MR, Joyce S (2004) NF-kappa B controls cell fate specification, survival, and molecular differentiation of immunoregulatory natural T lymphocytes. J Immunol 172:2265–2273PubMedGoogle Scholar
  55. 55.
    Stanic AK, Bezbradica JS, Park JJ, Van Kaer L, Boothby MR, Joyce S (2004) Cutting edge: the ontogeny and function of Va14Ja18 natural T lymphocytes require signal processing by protein kinase C theta and NF-kappa B. J Immunol 172:4667–4671PubMedGoogle Scholar
  56. 56.
    Tilloy F, Di Santo JP, Bendelac A, Lantz O (1999) Thymic dependence of invariant V alpha 14+ natural killer-T cell development. Eur J Immunol 29:3313–3318PubMedCrossRefGoogle Scholar
  57. 57.
    Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA, Gapin L, Glimcher LH (2004) T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20:477–494PubMedCrossRefGoogle Scholar
  58. 58.
    Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal associated invariant T cells by MR1. Nature 422:164–169PubMedCrossRefGoogle Scholar
  59. 59.
    Urdahl KB, Sun JC, Bevan MJ (2002) Positive selection of MHC class Ib-restricted CD8(+) T cells on hematopoietic cells. Nat Immunol 3:772–779PubMedGoogle Scholar
  60. 60.
    Vicari AP, Herbelin A, Leite-de-Moraes MC, Von Freeden-Jeffry U, Murray R, Zlotnik A (1996) NK1.1+ T cells from IL-7-deficient mice have a normal distribution and selection but exhibit impaired cytokine production. Int Immunol 8:1759–1766PubMedCrossRefGoogle Scholar
  61. 61.
    Voyle RB, Beermann F, Lees RK, Schumann J, Zimmer J, Held W, MacDonald HR (2003) Ligand-dependent inhibition of CD1d-restricted NKT cell development in mice transgenic for the activating receptor Ly49D. J Exp Med 197:919–925PubMedCrossRefGoogle Scholar
  62. 62.
    Wei DG, Curran SA, Savage PB, Teyton L, Bendelac A (2006) Mechanisms imposing the Vbeta bias of Valpha14 natural killer T cells and consequences for microbial glycolipid recognition. J Exp Med 203:1197–1207PubMedCrossRefGoogle Scholar
  63. 63.
    Wei DG, Lee H, Park SH, Beaudoin L, Teyton L, Lehuen A, Bendelac A (2005) Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J Exp Med 202:239–248PubMedCrossRefGoogle Scholar
  64. 64.
    Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T, Teneberg S, Wang D, Proia RL, Levery SB, Savage PB, Teyton L, Bendelac A (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789PubMedCrossRefGoogle Scholar
  65. 65.
    Zimmer MI, Colmone A, Felio K, Xu H, Ma A, Wang CR (2006) A cell-type specific CD1d expression program modulates invariant NKT cell development and function. J Immunol 176:1421–1430PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • H. R. MacDonald
    • 1
  • M. P. Mycko
    • 1
  1. 1.Ludwig Institute for Cancer Research, Lausanne BranchUniversity of LausanneEpalingesSwitzerland

Personalised recommendations