Pathways of CD1 and Lipid Antigen Delivery, Trafficking, Processing, Loading, and Presentation

  • M. Sugita
  • D. C. Barral
  • M. B. Brenner
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 314)


Late Endosome Microsomal Triglyceride Transfer Protein Transporter Associate With Antigen Process Lipid Antigen Sphingolipid Activator Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amano M, Baumgarth N, Dick MD, Brossay L, Kronenberg M, Herzenberg LA, Strober S (1998) CD1 expression defines subsets of follicular and marginal zone B cells in the spleen: beta 2-microglobulin-dependent and independent forms. J Immunol 161:1710–1717PubMedGoogle Scholar
  2. Angenieux C, Salamero J, Fricker D, Cazenave JP, Goud B, Hanau D, and de La Salle H (2000) Characterization of CD1e, a third type of CD1 molecule expressed in dendritic cells. J Biol Chem 275:37757–37764PubMedCrossRefGoogle Scholar
  3. Angenieux C, Fraisier V, Maitre B, Racine V, van der Wel N, Fricker D, Proamer F, Sachse M, Cazenave JP, Peters P, Goud B, Hanau D, Sibarita JB, Salamero J, and de la Salle H (2005) The cellular pathway of CD1e in immature and maturing dendritic cells. Traffic 6:286–302PubMedCrossRefGoogle Scholar
  4. Balk SP, Burke S, Polischuk JE, Frantz ME, Yang L, Porcelli S, Colgan SP, Blumberg RS (1994) Beta 2-microglobulin-independent MHC class Ib molecule expressed by human intestinal epithelium. Science 265:259–262PubMedCrossRefGoogle Scholar
  5. Barboni E, Coade S, Fiori A (2005) The binding of mycolic acids to galectin-3: a novel interaction between a host soluble lectin and trafficking mycobacterial lipids? FEBS Lett 579:6749–6755PubMedCrossRefGoogle Scholar
  6. Bonifacino JS (2004) Insights into the biogenesis of lysosome-related organelles from the study of the Hermansky-Pudlak syndrome. Ann N Y Acad Sci 1038:103–114PubMedCrossRefGoogle Scholar
  7. Briken V, Jackman RM, Dasgupta S, Hoening S, Porcelli SA (2002) Intracellular trafficking pathway of newly synthesized CD1b molecules. EMBO J 21:825–834PubMedCrossRefGoogle Scholar
  8. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261PubMedCrossRefGoogle Scholar
  9. Brozovic S, Nagaishi T, Yoshida M, Betz S, Salas A, Chen D, Kaser A, Glickman J, Kuo T, Little A, Morrison J, Corazza N, Kim JY, Colgan SP, Young SG, Exley M, Blumberg RS (2004) CD1d function is regulated by microsomal triglyceride transfer protein. Nat Med 10:535–539PubMedCrossRefGoogle Scholar
  10. Cao X, Sugita M, Van Der Wel N, Lai J, Rogers RA, Peters PJ, Brenner MB (2002) CD1 molecules efficiently present antigen in immature dendritic cells and traffic independently of MHC class II during dendritic cell maturation. J Immunol 169:4770–4777PubMedGoogle Scholar
  11. Caplan S, Dell’Angelica EC, Gahl WA, Bonifacino JS (2000) Trafficking of major histocompatibility complex class II molecules in human B-lymphoblasts deficient in the AP-3 adaptor complex. Immunol Lett 72:113–117PubMedCrossRefGoogle Scholar
  12. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A (1997) Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388:782–787PubMedCrossRefGoogle Scholar
  13. Cernadas M, Sugita M, van der Wel N, Cao X, Gumperz JE, Maltsev S, Besra GS, Behar SM, Peters PJ, Brenner MB (2003) Lysosomal localization of murine CD1d mediated by AP-3 is necessary for NK T cell development. J Immunol 171:4149–4155PubMedGoogle Scholar
  14. Chiu YH, Park SH, Benlagha K, Forestier C, Jayawardena-Wolf J, Savage PB, Teyton L, Bendelac A (2002) Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nat Immunol 3:55–60PubMedCrossRefGoogle Scholar
  15. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44PubMedCrossRefGoogle Scholar
  16. De la Salle H, Mariotti S, Angenieux C, Gilleron M, Garcia-Alles LF, Malm D, Berg T, Paoletti S, Maitre B, Mourey L, Salamero J, Cazenave JP, Hanau D, Mori L, Puzo G, De Libero G (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310:1321–1324PubMedCrossRefGoogle Scholar
  17. De Silva AD, Park JJ, Matsuki N, Stanic AK, Brutkiewicz RR, Medof ME, Joyce S (2002) Lipid protein interactions: the assembly of CD1d1 with cellular phospholipids occurs in the endoplasmic reticulum. J Immunol 168:723–733PubMedGoogle Scholar
  18. Dell’Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS (1999) Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell 3:11–21PubMedCrossRefGoogle Scholar
  19. Diedrich G, Bangia N, Pan M, Cresswell P (2001) A role for calnexin in the assembly of the MHC class I loading complex in the endoplasmic reticulum. J Immunol 166:1703–1739PubMedGoogle Scholar
  20. Dougan SK, Salas A, Rava P, Agyemang A, Kaser A, Morrison J, Khurana A, Kronenberg M, Johnson C, Exley M, Hussain MM, Blumberg RS (2005) Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. J Exp Med 202:529–539PubMedCrossRefGoogle Scholar
  21. Ehehalt R, Fullekrug J, Pohl J, Ring A, Herrmann T, Stremmel W (2006) Mol Cell Biochem Translocation of long chain fatty acids across the plasma membrane-lipid rafts and fatty acid transport proteins. 284:135–140Google Scholar
  22. Elewaut D, Lawton AP, Nagarajan NA, Maverakis E, Khurana A, Honing S, Benedict CA, Sercarz E, Bakke O, Kronenberg M, Prigozy TI (2003) The adaptor protein AP-3 Is required for CD1d-mediated antigen presentation of glycosphingolipids and development of Valpha14i NKT cells. J Exp Med 198:1133–1146PubMedCrossRefGoogle Scholar
  23. Figdor CG, van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2:77–84PubMedCrossRefGoogle Scholar
  24. Gagescu R, Demaurex N, Parton RG, Hunziker W, Huber LA, Gruenberg J (2000) The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol Biol Cell 11:2775–2791PubMedGoogle Scholar
  25. Gordon DA, Jamil H (2000) Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim Biophys Acta 1486:72–83PubMedGoogle Scholar
  26. Greaves DR, Gordon S (2005) Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. J Lipid Res 46:11–20PubMedCrossRefGoogle Scholar
  27. Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784PubMedCrossRefGoogle Scholar
  28. Honey K, Benlagha K, Beers C, Forbush K, Teyton L, Kleijmeer MJ, Rudensky AY, Bendelac A (2002) Thymocyte expression of cathepsin L is essential for NKT cell development. Nat Immunol 3:1069–1074PubMedCrossRefGoogle Scholar
  29. Hughes EA, Cresswell P (1998) The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr Biol 8:709–712PubMedCrossRefGoogle Scholar
  30. Hunger RE, Sieling PA, Ochoa MT, Sugaya M, Burdick AE, Rea TH, Brennan PJ, Belisle JT, Blauvelt A, Porcelli SA, Modlin RL (2004) Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest 113:701–708PubMedCrossRefGoogle Scholar
  31. Huttinger R, Staffler G, Majdic O, Stockinger H (1999) Analysis of the early biogenesis of CD1b: involvement of the chaperones calnexin and calreticulin, the proteasome and beta(2)-microglobulin. Int Immunol 11:1615–1623PubMedCrossRefGoogle Scholar
  32. Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13:470–477PubMedCrossRefGoogle Scholar
  33. Jackman RM, Stenger S, Lee A, Moody DB, Rogers RA, Niazi KR, Sugita M, Modlin RL, Peters PJ, Porcelli SA (1998) The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity 8:341–351PubMedCrossRefGoogle Scholar
  34. Jamil H, Dickson JK Jr, Chu CH, Lago MW, Rinehart JK, Biller SA, Gregg RE, Wetterau JR (1995) Microsomal triglyceride transfer protein. Specificity of lipid binding and transport. J Biol Chem 270:6549–6554PubMedCrossRefGoogle Scholar
  35. Jayawardena-Wolf J, Benlagha K, Chiu YH, Mehr R, Bendelac A (2001) CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15:897–908PubMedCrossRefGoogle Scholar
  36. Joyce S, Woods AS, Yewdell JW, Bennink JR, De Silva AD, Boesteanu A, Balk SP, Cotter RJ, Brutkiewicz RR (1998) Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279:1541–1544PubMedCrossRefGoogle Scholar
  37. Kang SJ, Cresswell P (2002) Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. EMBO J 21:1650–1660PubMedCrossRefGoogle Scholar
  38. Kang SJ, Cresswell P (2004) Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat Immunol 5:175–181PubMedCrossRefGoogle Scholar
  39. Kim HS, Garcia J, Exley M, Johnson KW, Balk SP, Blumberg RS (1999) Biochemical characterization of CD1d expression in the absence of beta2-microglobulin. J Biol Chem 274:9289–9295PubMedCrossRefGoogle Scholar
  40. Kobayashi T, Gu F, Gruenberg J (1998a) Lipids, lipid domains and lipid-protein interactions in endocytic membrane traffic. Semin Cell Dev Biol 9:517–526PubMedCrossRefGoogle Scholar
  41. Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG, Gruenberg J (1998b) A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392:193–197PubMedCrossRefGoogle Scholar
  42. Kolter T, Sandhoff K (2005) Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 21:81–103PubMedCrossRefGoogle Scholar
  43. Moody DB, Briken V, Cheng T-Y Roura-Mir C, Guy MR, Geho DH, Tykocinski ML, Besra GS, Porcelli SA (2002) Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat Immunol 3:435–442PubMedGoogle Scholar
  44. Morrice NA, Powis SJ (1998) A role for the thiol-dependent reductase ERp57 in the assembly of MHC class I molecules. Curr Biol 8:713–716PubMedCrossRefGoogle Scholar
  45. Mukherjee S, Maxfield FR (2000) Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1:203–211PubMedCrossRefGoogle Scholar
  46. Mukherjee S, Soe TT, Maxfield FR (1999) Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J Cell Biol 144:1271–1284PubMedCrossRefGoogle Scholar
  47. Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161:673–677PubMedCrossRefGoogle Scholar
  48. Nijman HW, Kleijmeer MJ, Ossevoort MA, Oorschot VM, Vierboom MP, van de Keur M, Kenemans P, Kast WM, Geuze HJ, Melief CJ (1995) Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells. J Exp Med 182:163–174PubMedCrossRefGoogle Scholar
  49. Ortmann B, Androlewicz MJ, Cresswell P (1994) MHC class I/beta 2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 368:864–867PubMedCrossRefGoogle Scholar
  50. Park JJ, Kang SJ, De Silva AD, Stanic AK, Casorati G, Hachey DL, Cresswell P, Joyce S (2004) Lipid-protein interactions: biosynthetic assembly of CD1 with lipids in the endoplasmic reticulum is evolutionarily conserved. Proc Natl Acad Sci U S A 101:1022–1026PubMedCrossRefGoogle Scholar
  51. Peden AA, Oorschot V, Hesser BA, Austin CD, Scheller RH, Klumperman J (2004) Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins. J Cell Biol 164:1065–1076PubMedCrossRefGoogle Scholar
  52. Pierre P, Turley SJ, Gatti E, Hull M, Meltzer J, Mirza A, Inaba K, Steinman RM, Mellman I (1997) Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388:787–792PubMedCrossRefGoogle Scholar
  53. Prigozy TI, Naidenko O, Qasba P, Elewaut D, Brossay L, Khurana A, Natori T, Koezuka Y, Kulkarni A, Kronenberg M (2001) Glycolipid antigen processing for presentation by CD1d molecules. Science 291:664–667PubMedCrossRefGoogle Scholar
  54. Prigozy TI, Sieling PA, Clemens D, Stewart PL, Behar SM, Porcelli SA, Brenner MB, Modlin RL, Kronenberg M (1997) The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6:187–197PubMedCrossRefGoogle Scholar
  55. Raggers RJ, Pomorski T, Holthuis JC, Kalin N, and van Meer G (2000) Lipid traffic: the ABC of transbilayer movement. Traffic 1:226–234PubMedCrossRefGoogle Scholar
  56. Riese RJ, Shi GP, Villadangos J, Stetson D, Driessen C, Lennon-Dumenil AM, Chu CL, Naumov Y, Behar SM, Ploegh H, Locksley R, Chapman HA (2001) T cell selection and maturation by cathepsin S. Immunity 15:909–919PubMedCrossRefGoogle Scholar
  57. Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P (1996) Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5:103–114PubMedCrossRefGoogle Scholar
  58. Salamero J, Bausinger H, Mommaas AM, Lipsker D, Proamer F, Cazenave JP, Goud B, de la Salle H, Hanau D (2001) CD1a molecules traffic through the early recycling endosomal pathway in human Langerhans cells. J Invest Dermatol 116:401–408PubMedCrossRefGoogle Scholar
  59. Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182:389–400PubMedCrossRefGoogle Scholar
  60. Schaffer JE, Lodish HF (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79:427–436PubMedCrossRefGoogle Scholar
  61. Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, Modlin RL, Brinkmann V, Kaufmann SH (2003) Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med 9:1039–1046PubMedCrossRefGoogle Scholar
  62. Sevilla LM, Richter SS, Miller J (2001) Intracellular transport of MHC class II and associated invariant chain in antigen presenting cells from AP-3-deficient mocha mice. Cell Immunol 210:143–53PubMedCrossRefGoogle Scholar
  63. Sugita M, Brenner MB (1994) An unstable beta 2-microglobulin: major histocompatibility complex class I heavy chain intermediate dissociates from calnexin and then is stabilized by binding peptide. J Exp Med 180:2163–2171PubMedCrossRefGoogle Scholar
  64. Sugita M, Porcelli SA, Brenner MB (1997) Assembly and retention of CD1b heavy chains in the endoplasmic reticulum. J Immunol 159:2358–2365PubMedGoogle Scholar
  65. Sugita M, Grant EP, van Donselaar E, Hsu VW, Rogers RA, Peters PJ, Brenner MB (1999) Separate pathways for antigen presentation by CD1 molecules. Immunity 11:743–752PubMedCrossRefGoogle Scholar
  66. Sugita M, Jackman RM, van Donselaar E, Behar SM, Rogers RA, Peters PJ, Brenner MB, Porcelli SA (1996) Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 273:349–352PubMedCrossRefGoogle Scholar
  67. Sugita M, van Der Wel N, Rogers RA, Peters PJ, Brenner MB (2000) CD1c molecules broadly survey the endocytic system. Proc Natl Acad Sci U S A 97:8445–8450PubMedCrossRefGoogle Scholar
  68. Sugita M, Cao X, Watts GF, Rogers RA, Bonifacino JS, Brenner MB (2002) Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16:697–706PubMedCrossRefGoogle Scholar
  69. Van den Elzen P, Garg S, Leon L, Brigl M, Leadbetter EA, Gumperz JE, Dascher CC, Cheng TY, Sacks FM, Illarionov PA, Besra GS, Kent SC, Moody DB, Brenner MB (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437:906–910PubMedCrossRefGoogle Scholar
  70. Van der Wel NN, Sugita M, Fluitsma DM, Cao X, Schreibelt G, Brenner MB, Peters PJ (2003) CD1 and major histocompatibility complex II molecules follow a different course during dendritic cell maturation. Mol Biol Cell 14:3378–3388PubMedCrossRefGoogle Scholar
  71. Willnow TE, Nykjaer A, Herz J (1999) Lipoprotein receptors: new roles for ancient proteins. Nat Cell Biol 1:E157–E162PubMedCrossRefGoogle Scholar
  72. Winau F, Schwierzeck V, Hurwitz R, Remmel N, Sieling PA, Modlin RL, Porcelli SA, Brinkmann V, Sugita M, Sandhoff K, Kaufmann SH, Schaible UE (2004) Saposin C is required for lipid presentation by human CD1b. Nat Immunol 5:169–174PubMedCrossRefGoogle Scholar
  73. York IA, Rock KL (1996) Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol 14:369–396PubMedCrossRefGoogle Scholar
  74. Zhou D, Cantu C 3rd, Sagiv Y, Schrantz N, Kulkarni AB, Qi X, Mahuran DJ, Morales CR, Grabowski GA, Benlagha K, Savage P, Bendelac A, Teyton L (2004) Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303:523–527PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Sugita
    • 1
  • D. C. Barral
    • 2
  • M. B. Brenner
    • 2
  1. 1.Division of Cell Regulation, Institute for Virus ResearchKyoto UniversityKyotoJapan
  2. 2.Division of Rheumatology, Immunology and AllergyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations