Advertisement

Structures and Functions of Microbial Lipid Antigens Presented by CD1

  • B. E. Willcox
  • C. R. Willcox
  • L. G. Dover
  • G. Besra
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 314)

Keywords

Major Histocompatibility Complex Class Mycolic Acid Lipid Antigen Antimicrobial Immunity Nocardia Farcinica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amprey JL, Im JS, Turco SJ, Murray HW, Illarionov PA, Besra GS, Porcelli SA, Spath GF (2004) A subset of liver NKT cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J Exp Med 200:895–904PubMedCrossRefGoogle Scholar
  2. Batuwangala T, Shepherd D, Gadola SD, Gibson KJ, Zaccai NR, Fersht AR, Besra GS, Cerundolo V, Jones EY (2004) The crystal structure of human CD1b with a bound bacterial glycolipid. J Immunol 172:2382–2388PubMedGoogle Scholar
  3. Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB (1994) Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature 372:691–694PubMedCrossRefGoogle Scholar
  4. Beckman EM, Melian A, Behar SM, Sieling PA, Chatterjee D, Furlong ST, Matsumoto R, Rosat JP, Modlin RL, Porcelli SA (1996) CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. J Immunol 157:2795–2803PubMedGoogle Scholar
  5. Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268:863–865PubMedCrossRefGoogle Scholar
  6. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63PubMedCrossRefGoogle Scholar
  7. Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890PubMedCrossRefGoogle Scholar
  8. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237PubMedCrossRefGoogle Scholar
  9. Briken V, Jackman RM, Watts GF, Rogers RA, Porcelli SA (2000) Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J Exp Med 192:281–288PubMedCrossRefGoogle Scholar
  10. Brossay L, Tangri S, Bix M, Cardell S, Locksley R, Kronenberg M (1998) Mouse CD1-autoreactive T cells have diverse patterns of reactivity to CD1+ targets. J Immunol 160:3681–3688PubMedGoogle Scholar
  11. Calabi F, Jarvis JM, Martin L, Milstein C (1989) Two classes of CD1 genes. Eur J Immunol 19:285–292PubMedCrossRefGoogle Scholar
  12. Card GL, Peterson NA, Smith CA, Rupp B, Schick BM, Baker EN (2005) The crystal structure of Rv1347c, a putative antibiotic resistance protein from Mycobacterium tuberculosis, reveals a GCN5-related fold and suggests an alternative function in siderophore biosynthesis. J Biol Chem 280:13978–13986PubMedCrossRefGoogle Scholar
  13. Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620PubMedCrossRefGoogle Scholar
  14. Casey PJ (1995) Protein lipidation in cell signaling. Science 268:221–225PubMedCrossRefGoogle Scholar
  15. Crick DC, Scocca JR, Rush JS, Frank DW, Krag SS, Waechter CJ (1994) Induction of dolichyl-saccharide intermediate biosynthesis corresponds to increased long chain cis-isoprenyltransferase activity during the mitogenic response in mouse B cells. J Biol Chem 269:10559–10565PubMedGoogle Scholar
  16. Dascher CC, Hiromatsu K, Xiong X, Morehouse C, Watts G, Liu G, McMurray DN, LeClair KP, Porcelli SA, Brenner MB (2003) Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. Int Immunol 15:915–925PubMedCrossRefGoogle Scholar
  17. De la Salle H, Mariotti S, Angenieux C, Gilleron M, Garcia-Alles LF, Malm D, Berg T, Paoletti S, Maitre B, Mourey L et al (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310:1321–1324PubMedCrossRefGoogle Scholar
  18. De Silva AD, Park JJ, Matsuki N, Stanic AK, Brutkiewicz RR, Medof ME, Joyce S (2002) Lipid protein interactions: the assembly of CD1d1 with cellular phospholipids occurs in the endoplasmic reticulum. J Immunol 168:723–733PubMedGoogle Scholar
  19. De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE 3rd (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97:1252–1257PubMedCrossRefGoogle Scholar
  20. Dussurget O, Timm J, Gomez M, Gold B, Yu S, Sabol SZ, Holmes RK, Jacobs WR Jr, Smith I (1999) Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J Bacteriol 181:3402–3408PubMedGoogle Scholar
  21. Dutronc Y, Porcelli SA (2002) The CD1 family and T cell recognition of lipid antigens. Tissue Antigens 60:337–353PubMedCrossRefGoogle Scholar
  22. Edlund C, Soderberg M, Kristensson K, Dallner G (1992) Ubiquinone, dolichol, and cholesterol metabolism in aging and Alzheimer’s disease. Biochem Cell Biol 70:422–428PubMedCrossRefGoogle Scholar
  23. Ernst WA, Maher J, Cho S, Niazi KR, Chatterjee D, Moody DB, Besra GS, Watanabe Y, Jensen PE, Porcelli SA et al (1998) Molecular interaction of CD1b with lipoglycan antigens. Immunity 8:331–340PubMedCrossRefGoogle Scholar
  24. Exley M, Garcia J, Balk SP, Porcelli S (1997) Requirements for CD1d recognition by human invariant Valpha24+ CD4-CD8-T cells. J Exp Med 186:109–120PubMedCrossRefGoogle Scholar
  25. Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, Hurwitz R, Kursar M, Bonneville M, Kaufmann SH, Schaible UE (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci U S A 101:10685–10690PubMedCrossRefGoogle Scholar
  26. Gadola SD, Zaccai NR, Harlos K, Shepherd D, Castro-Palomino JC, Ritter G, Schmidt RR, Jones EY, Cerundolo V (2002) Structure of human CD1b with bound ligands at 2.3. A, a maze for alkyl chains. Nat Immunol 3:721–726PubMedCrossRefGoogle Scholar
  27. Gilleron M, Stenger S, Mazorra Z, Wittke F, Mariotti S, Bohmer G, Prandi J, Mori L, Puzo G, De Libero G (2004) Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med 199:649–659PubMedCrossRefGoogle Scholar
  28. Goren MB (1982) Immunoreactive substances of mycobacteria. Am Rev Respir Dis 125:50–69PubMedGoogle Scholar
  29. Grant EP, Degano M, Rosat JP, Stenger S, Modlin RL, Wilson IA, Porcelli SA, Brenner MB (1999) Molecular recognition of lipid antigens by T cell receptors. J Exp Med 189:195–205PubMedCrossRefGoogle Scholar
  30. Grant EP, Beckman EM, Behar SM, Degano M, Frederique D, Besra GS, Wilson IA, Porcelli SA, Furlong ST, Brenner MB (2002) Fine specificity of TCR complementarity-determining region residues and lipid antigen hydrophilic moieties in the recognition of a CD1-lipid complex. J Immunol 168:3933–3940PubMedGoogle Scholar
  31. Gumperz JE, Roy C, Makowska A, Lum D, Sugita M, Podrebarac T, Koezuka Y, Porcelli SA, Cardell S, Brenner MB, Behar SM (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221PubMedCrossRefGoogle Scholar
  32. Han M, Hannick LI, DiBrino M, Robinson MA (1999) Polymorphism of human CD1 genes. Tissue Antigens 54:122–127PubMedCrossRefGoogle Scholar
  33. Henry A, Stacpoole PW, Allen CM (1991) Dolichol biosynthesis in human malignant cells. Biochem J 278:741–747PubMedGoogle Scholar
  34. Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199:947–957PubMedCrossRefGoogle Scholar
  35. Joyce S, Woods AS, Yewdell JW, Bennink JR, De Silva AD, Boesteanu A, Balk SP, Cotter RJ, Brutkiewicz RR (1998) Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279:1541–1544PubMedCrossRefGoogle Scholar
  36. Karakousis PC, Bishai WR, Dorman SE (2004) Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell Microbiol 6:105–116PubMedCrossRefGoogle Scholar
  37. Kaufmann SH (1995) Immunity to intracellular microbial pathogens. Immunol Today 16:338–342PubMedCrossRefGoogle Scholar
  38. Kawahara K, Moll H, Knirel YA, Seydel U, Zahringer U (2000) Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur J Biochem 267:1837–1846PubMedCrossRefGoogle Scholar
  39. Kawashima T, Norose Y, Watanabe Y, Enomoto Y, Narazaki H, Watari E, Tanaka S, Takahashi H, Yano I, Brenner MB, Sugita M (2003) Cutting edge: major CD8. T cell response to live bacillus Calmette-Guerin is mediated by CD1 molecules. J Immunol 170:5345–5348PubMedGoogle Scholar
  40. Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525PubMedCrossRefGoogle Scholar
  41. LaMarca BB, Zhu W, Arceneaux JE, Byers BR, Lundrigan MD (2004) Participation of fad and mbt genes in synthesis of mycobactin in Mycobacterium smegmatis. J Bacteriol 186:374–382PubMedCrossRefGoogle Scholar
  42. Mariotti S, Teloni R, Iona E, Fattorini L, Giannoni F, Romagnoli G, Orefici G, Nisini R (2002) Mycobacterium tuberculosis subverts the differentiation of human monocytes into dendritic cells. Eur J Immunol 32:3050–3058PubMedCrossRefGoogle Scholar
  43. Matsunaga I, Bhatt A, Young DC, Cheng TY, Eyles SJ, Besra GS, Briken V, Porcelli SA, Costello CE, Jacobs WR Jr, Moody DB (2004) Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J Exp Med 200:1559–1569PubMedCrossRefGoogle Scholar
  44. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N et al (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529PubMedCrossRefGoogle Scholar
  45. McMichael AJ, Pilch JR, Galfre G, Mason DY, Fabre JW, Milstein C (1979) A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol 9:205–210PubMedCrossRefGoogle Scholar
  46. Melian A, Watts GF, Shamshiev A, De Libero G, Clatworthy A, Vincent M, Brenner MB, Behar S, Niazi K, Modlin RL et al (2000) Molecular recognition of human CD1b antigen complexes: evidence for a common pattern of interaction with alpha beta TCRs. J Immunol 165:4494–4504PubMedGoogle Scholar
  47. Molano A, Park SH, Chiu YH, Nosseir S, Bendelac A, Tsuji M (2000) Cutting edge: the IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of GPIs in NKT cell activation and antimalarial responses. J Immunol 164:5005–5009PubMedGoogle Scholar
  48. Moody DB, Reinhold BB, Guy MR, Beckman EM, Frederique DE, Furlong ST, Ye S, Reinhold VN, Sieling PA, Modlin RL et al (1997) Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278:283–286PubMedCrossRefGoogle Scholar
  49. Moody DB, Guy MR, Grant E, Cheng TY, Brenner MB, Besra GS, Porcelli SA (2000a) CD1b-mediated T cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection. J Exp Med 192:965–976PubMedCrossRefGoogle Scholar
  50. Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA (2000b) CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404:884–888PubMedCrossRefGoogle Scholar
  51. Moody DB, Briken V, Cheng TY, Roura-Mir C, Guy MR, Geho DH, Tykocinski ML, Besra GS, Porcelli SA (2002) Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat Immunol 3:435–442PubMedGoogle Scholar
  52. Moody DB, Young DC, Cheng TY, Rosat JP, Roura-Mir C, O’Connor PB, Zajonc DM, Walz A, Miller MJ, Levery SB et al (2004) T cell activation by lipopeptide antigens. Science 303:527–531PubMedCrossRefGoogle Scholar
  53. Narayanan RB, Girdhar A, Girdhar BK (1990) CD1-positive epidermal Langerhans cells in regressed tuberculoid and lepromatous leprosy lesions. Int Arch Allergy Appl Immunol 92:94–96PubMedGoogle Scholar
  54. Natori T, Morita M, Akimoto K, Koezuka Y (1994) Agelasphins novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas-Mauritianus. Tetrahedron 50:2711–2784CrossRefGoogle Scholar
  55. North RJ, Jung YJ (2004) Immunity to tuberculosis. Annu Rev Immunol 22:599–623PubMedCrossRefGoogle Scholar
  56. Ochoa MT, Stenger S, Sieling PA, Thoma-Uszynski S, Sabet S, Cho S, Krensky AM, Rollinghoff M, Nunes Sarno E, Burdick AE et al (2001) T-cell release of granulysin contributes to host defense in leprosy. Nat Med 7:174–179PubMedCrossRefGoogle Scholar
  57. Olano JP, Walker DH (2002) Human ehrlichioses. Med Clin North Am 86:375–392PubMedCrossRefGoogle Scholar
  58. Porcelli S, Brenner MB, Greenstein JL, Balk SP, Terhorst C, Bleicher PA (1989) Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature 341:447–450PubMedCrossRefGoogle Scholar
  59. Porcelli S, Morita CT, Brenner MB (1992) CD1b restricts the response of human CD4-8-T lymphocytes to a microbial antigen. Nature 360:593–597PubMedCrossRefGoogle Scholar
  60. Procopio DO, Almeida IC, Torrecilhas AC, Cardoso JE, Teyton L, Travassos LR, Bendelac A, Gazzinelli RT (2002) Glycosylphosphatidylinositol-anchored mucin-like glycoproteins from Trypanosoma cruzi bind to CD1d but do not elicit dominant innate or adaptive immune responses via the CD1d/NKT cell pathway. J Immunol 169:3926–3933PubMedGoogle Scholar
  61. Pukel CS, Lloyd KO, Travassos LR, Dippold WG, Oettgen HF, Old LJ (1982) GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody. J Exp Med 155:1133–1147Google Scholar
  62. Quadri LE, Sello J, Keating TA, Weinreb PH, Walsh CT (1998) Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5:631–645PubMedCrossRefGoogle Scholar
  63. Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941PubMedCrossRefGoogle Scholar
  64. Ratledge C, Snow GA (1974) Isolation and structure of nocobactin NA, a lipid-soluble iron-binding compound from Nocardia asteroides. Biochem J 139:407–413PubMedGoogle Scholar
  65. Romero JF, Eberl G, MacDonald HR, Corradin G (2001) CD1d-restricted NKT cells are dispensable for specific antibody responses and protective immunity against liver stage malaria infection in mice. Parasite Immunol 23:267–269PubMedCrossRefGoogle Scholar
  66. Rosat JP, Grant EP, Beckman EM, Dascher CC, Sieling PA, Frederique D, Modlin RL, Porcelli SA, Furlong ST, Brenner MB (1999) CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ alpha beta T cell pool. J Immunol 162:366–371PubMedGoogle Scholar
  67. Roura-Mir C, Wang L, Cheng TY, Matsunaga I, Dascher CC, Peng SL, Fenton MJ, Kirschning C, Moody DB (2005) Mycobacterium tuberculosis regulates CD1 antigen presentation pathways through TLR-2. J Immunol 175:1758–1766PubMedGoogle Scholar
  68. Schaible UE, Hagens K, Fischer K, Collins HL, Kaufmann SH (2000) Intersection of group ICD1 molecules and mycobacteria in different intracellular compartments of dendritic cells. J Immunol 164:4843–4852PubMedGoogle Scholar
  69. Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, Modlin RL, Brinkmann V, Kaufmann SH (2003) Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med 9:1039–1046PubMedCrossRefGoogle Scholar
  70. Schofield L, McConville MJ, Hansen D, Campbell AS, Fraser-Reid B, Grusby MJ, Tachado SD (1999) CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283:225–229PubMedCrossRefGoogle Scholar
  71. Shamshiev A, Donda A, Prigozy TI, Mori L, Chigorno V, Benedict CA, Kappos L, Sonnino S, Kronenberg M, De Libero G (2000) The alphabeta T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 13:255–264PubMedCrossRefGoogle Scholar
  72. Sieling PA, Chatterjee D, Porcelli SA, Prigozy TI, Mazzaccaro RJ, Soriano T, Bloom BR, Brenner MB, Kronenberg M, Brennan PJ et al (1995) CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269:227–230PubMedCrossRefGoogle Scholar
  73. Sieling PA, Jullien D, Dahlem M, Tedder TF, Rea TH, Modlin RL, Porcelli SA (1999) CD1 expression by dendritic cells in human leprosy lesions: correlation with effective host immunity. J Immunol 162:1851–1858PubMedGoogle Scholar
  74. Sieling PA, Ochoa MT, Jullien D, Leslie DS, Sabet S, Rosat JP, Burdick AE, Rea TH, Brenner MB, Porcelli SA, Modlin RL (2000) Evidence for human CD4+ T cells in the CD1-restricted repertoire: derivation of mycobacteria-reactive T cells from leprosy lesions. J Immunol 164:4790–4796PubMedGoogle Scholar
  75. Snow GA (1970) Mycobactins: iron-chelating growth factors from mycobacteria. Bacterio Rev 34:99–125Google Scholar
  76. Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35:1692–1701PubMedCrossRefGoogle Scholar
  77. Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, Sette A, Brenner MB, Porcelli SA, Bloom BR, Modlin RL (1997) Differential effects of cytolytic T cell subsets on intracellular infection. Science 276:1684–1687PubMedCrossRefGoogle Scholar
  78. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melian A, Bogdan C et al (1998a) An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121–125PubMedCrossRefGoogle Scholar
  79. Stenger S, Niazi KR, Modlin RL (1998b) Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J Immunol 161:3582–3588PubMedGoogle Scholar
  80. Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, Gapin L, Kronenberg M, Locksley RM (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NKT cells poised for rapid effector function. J Exp Med 198:1069–1076PubMedCrossRefGoogle Scholar
  81. Sugita M, Jackman RM, van Donselaar E, Behar SM, Rogers RA, Peters PJ, Brenner MB, Porcelli SA (1996) Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 273:349–352PubMedCrossRefGoogle Scholar
  82. Sugita M, Grant EP, van Donselaar E, Hsu VW, Rogers RA, Peters PJ, Brenner MB (1999) Separate pathways for antigen presentation by CD1 molecules. Immunity 11:743–752PubMedCrossRefGoogle Scholar
  83. Uehira K, Amakawa R, Ito T, Tajima K, Naitoh S, Ozaki Y, Shimizu T, Yamaguchi K, Uemura Y, Kitajima H et al (2002) Dendritic cells are decreased in blood and accumulated in granuloma in tuberculosis. Clin Immunol 105:296–303PubMedCrossRefGoogle Scholar
  84. Ulrichs T, Moody DB, Grant E, Kaufmann SH, Porcelli SA (2003) T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect Immun 71:3076–3087PubMedCrossRefGoogle Scholar
  85. Von Loewenich FD, Scorpio DG, Reischl U, Dumler JS, Bogdan C (2004) Frontline: control of Anaplasma phagocytophilum, an obligate intracellular pathogen, in the absence of inducible nitric oxide synthase, phagocyte NADPH oxidase, tumor necrosis factor Toll-like receptor (TLR)2 and TLR4, or the TLR adaptor molecule MyD88. Eur J Immunol 34:1789–1797CrossRefGoogle Scholar
  86. Wooldridge KG, Williams PH (1993) Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12:325–348PubMedCrossRefGoogle Scholar
  87. Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 198:173–181PubMedCrossRefGoogle Scholar
  88. Wu D, Xing GW, Poles MA, Horowitz A, Kinjo Y, Sullivan B, Bodmer-Narkevitch V, Plettenburg O, Kronenberg M, Tsuji M et al (2005) Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc Natl Acad Sci U S A 102:1351–1356PubMedCrossRefGoogle Scholar
  89. Wu D, Zajonc DM, Fujio M, Sullivan BA, Kinjo Y, Kronenberg M, Wilson IA, Wong CH (2006) Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci U S A 103:3972–3977PubMedCrossRefGoogle Scholar
  90. Yarkoni E, Goren MB, Rapp HJ (1979) Regression of a transplanted guinea pig hepatoma after intralesional injection of an emulsified mixture of endotoxin and mycobacterial sulfolipid. Infect Immun 24:357–362PubMedGoogle Scholar
  91. Zajonc DM, Elsliger MA, Teyton L, Wilson IA (2003) Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 A. Nat Immunol 4:808–815PubMedCrossRefGoogle Scholar
  92. Zajonc DM, Crispin MD, Bowden TA, Young DC, Cheng TY, Hu J, Costello CE, Rudd PM, Dwek RA, Miller MJ et al (2005a) Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22:209–219PubMedCrossRefGoogle Scholar
  93. Zajonc DM, Maricic I, Wu D, Halder R, Roy K, Wong CH, Kumar V, Wilson IA (2005b) Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J Exp Med 202:1517–1526PubMedCrossRefGoogle Scholar
  94. Zeng Z, Castano AR, Segelke BW, Stura EA, Peterson PA, Wilson IA (1997) Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277:339–345PubMedCrossRefGoogle Scholar
  95. Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T et al (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • B. E. Willcox
    • 1
  • C. R. Willcox
    • 2
  • L. G. Dover
    • 3
  • G. Besra
    • 3
  1. 1.CRUK Institute for Cancer StudiesEdgbaston, BirminghamUK
  2. 2.Institute for Biomedical ResearchEdgbaston, BirminghamUK
  3. 3.School of BiosciencesEdgbaston, BirminghamUK

Personalised recommendations