CD1-Restricted T Cells and Tumor Immunity

  • J. B. Swann
  • J. M. C. Coquet
  • M. J. Smyth
  • D. I. Godfrey
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 314)


Natural Killer Cell Antitumor Immunity Tumor Immunity Glycolipid Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237PubMedCrossRefGoogle Scholar
  2. 2.
    Koseki H, Imai K, Nakayama F, Sado T, Moriwaki K, Taniguchi M (1990) Homogenous junctional sequence of the V14+ T-cell antigen receptor alpha chain expanded in unprimed mice. Proc Natl Acad Sci U S A 87:5248–5252PubMedCrossRefGoogle Scholar
  3. 3.
    Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR (1995) CD1 recognition by mouse NK1+ T lymphocytes. Science 268:863–865PubMedCrossRefGoogle Scholar
  4. 4.
    Smiley ST, Kaplan MH, Grusby MJ (1997) Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275:977–979PubMedCrossRefGoogle Scholar
  5. 5.
    Chen YH, Chiu NM, Mandal M, Wang N, Wang CR (1997) Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 6:459–467PubMedCrossRefGoogle Scholar
  6. 6.
    Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L (1997) CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6:469–477PubMedCrossRefGoogle Scholar
  7. 7.
    Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E et al (1997) CD1d-restricted and TCR-mediated activation of valpha14. NKT cells by glycosylceramides. Science 278:1626–1629PubMedCrossRefGoogle Scholar
  8. 8.
    Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192:741–754PubMedCrossRefGoogle Scholar
  9. 9.
    Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191:1895–1903PubMedCrossRefGoogle Scholar
  10. 10.
    Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, Kronenberg M (1998) CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 188:1521–1528PubMedCrossRefGoogle Scholar
  11. 11.
    Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 198:173–181PubMedCrossRefGoogle Scholar
  12. 12.
    Rauch J, Gumperz J, Robinson C, Skold M, Roy C, Young DC, Lafleur M, Moody DB, Brenner MB, Costello CE et al (2003) Structural features of the acyl chain determine self-phospholipid antigen recognition by a CD1d-restricted invariant NKT (iNKT) cell. J Biol Chem 278:47508–47515PubMedCrossRefGoogle Scholar
  13. 13.
    Ortaldo JR, Young HA, Winkler-Pickett RT, Bere EW Jr, Murphy WJ, Wiltrout RH (2004) Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J Immunol 172:943–953PubMedGoogle Scholar
  14. 14.
    Parekh VV, Singh AK, Wilson MT, Olivares-Villagomez D, Bezbradica JS, Inazawa H, Ehara H, Sakai T, Serizawa I, Wu L et al (2004) Quantitative and qualitative differences in the in vivo response of NKT cells to distinct alpha-and beta-anomeric glycolipids. J Immunol 173:3693–3706PubMedGoogle Scholar
  15. 15.
    Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T et al (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789PubMedCrossRefGoogle Scholar
  16. 16.
    Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N et al (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529PubMedCrossRefGoogle Scholar
  17. 17.
    Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525PubMedCrossRefGoogle Scholar
  18. 18.
    Chiu YH, Jayawardena J, Weiss A, Lee D, Park SH, Dautry-Varsat A, Bendelac A (1999) Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 189:103–110PubMedCrossRefGoogle Scholar
  19. 19.
    Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M, Kawano T, Pelikan SB, Crowe NY, Godfrey DI (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668PubMedCrossRefGoogle Scholar
  20. 20.
    Crowe NY, Smyth MJ, Godfrey DI (2002) A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med 196:119–127PubMedCrossRefGoogle Scholar
  21. 21.
    Gumperz JE, Roy C, Makowska A, Lum D, Sugita M, Podrebarac T, Koezuka Y, Porcelli SA, Cardell S, Brenner MB et al (2000) Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–221PubMedCrossRefGoogle Scholar
  22. 22.
    Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237PubMedCrossRefGoogle Scholar
  23. 23.
    Crowe NY, Coquet JM, Berzins SP, Kyparissoudis K, Keating R, Pellicci DG, Hayakawa Y, Godfrey DI, Smyth MJ (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202:1279–1288PubMedCrossRefGoogle Scholar
  24. 24.
    Nishikawa H, Kato T, Tanida K, Hiasa A, Tawara I, Ikeda H, Ikarashi Y, Wakasugi H, Kronenberg M, Nakayama T et al (2003) CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci U S A 100:10902–10906PubMedCrossRefGoogle Scholar
  25. 25.
    Nishikawa H, Kato T, Tawara I, Takemitsu T, Saito K, Wang L, Ikarashi Y, Wakasugi H, Nakayama T, Taniguchi M et al (2005) Accelerated chemically induced tumor development mediated by CD4+CD25+ regulatory T cells in wild-type hosts. Proc Natl Acad Sci U S A 102:9253–9257PubMedCrossRefGoogle Scholar
  26. 26.
    Azuma T, Takahashi T, Kunisato A, Kitamura T, Hirai H (2003) Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 63:4516–4520PubMedGoogle Scholar
  27. 27.
    Jiang S, Game DS, Davies D, Lombardi G, Lechler RI (2005) Activated CD1d-restricted natural killer T cells secrete IL-2: innate help for CD4+CD25+regulatory T cells? Eur J Immunol 35:1193–1200PubMedCrossRefGoogle Scholar
  28. 28.
    Crespo FA, Sun X, Cripps JG, Fernandez-Botran R (2006) The immunoregulatory effects of gangliosides involve immune deviation favoring type-2 T cell responses. J Leukoc Biol 79:586–595PubMedCrossRefGoogle Scholar
  29. 29.
    Jaffee EM (1999) Immunotherapy of cancer. Ann N Y Acad Sci 886:67–72PubMedCrossRefGoogle Scholar
  30. 30.
    Eager R, Nemunaitis J (2005) GM-CSF gene-transduced tumor vaccines. Mol Ther 12:18–27PubMedCrossRefGoogle Scholar
  31. 31.
    Gillessen S, Naumov YN, Nieuwenhuis EE, Exley MA, Lee FS, Mach N, Luster AD, Blumberg RS, Taniguchi M, Balk SP et al (2003) CD1d-restricted T cells regulate dendritic cell function and antitumor immunity in a granulocyte-macrophage colony-stimulating factor-dependent fashion. Proc Natl Acad Sci U S A 100:8874–8879PubMedCrossRefGoogle Scholar
  32. 32.
    Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y (1995) KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 7:529–534PubMedGoogle Scholar
  33. 33.
    Yamaguchi Y, Motoki K, Ueno H, Maeda K, Kobayashi E, Inoue H, Fukushima H, Koezuka Y (1996) Enhancing effects of (2S,3S,4R)-1-O-(alpha-D-galactopyranosyl)-2-(N-hexacosanoylamino)-1,3,4-octadecanetriol (KRN7000) on antigen-presenting function of antigen-presenting cells and antimetastatic activity of KRN7000-pretreated antigen-presenting cells. Oncol Res 8:399–407PubMedGoogle Scholar
  34. 34.
    Nakagawa R, Motoki K, Ueno H, Iijima R, Nakamura H, Kobayashi E, Shimosaka A, Koezuka Y (1998) Treatment of hepatic metastasis of the colon26 adenocarcinoma with an alpha-galactosylceramide KRN7000. Cancer Res 58:1202–1207PubMedGoogle Scholar
  35. 35.
    Nakagawa R, Motoki K, Nakamura H, Ueno H, Iijima R, Yamauchi A, Tsuyuki S, Inamoto T, Koezuka Y (1998) Antitumor activity of alpha-galactosylceramide KRN7000, in mice with EL-4 hepatic metastasis and its cytokine production. Oncol Res 10:561–568PubMedGoogle Scholar
  36. 36.
    Smyth MJ, Crowe NY, Pellicci DG, Kyparissoudis K, Kelly JM, Takeda K, Yagita H, Godfrey DI (2002) Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 99:1259–1266PubMedCrossRefGoogle Scholar
  37. 37.
    Hayakawa Y, Rovero S, Forni G, Smyth MJ (2003) Alpha-galactosylceramide (KRN7000) suppression of chemical-and oncogene-dependent carcinogenesis. Proc Natl Acad Sci U S A 100:9464–9469PubMedCrossRefGoogle Scholar
  38. 38.
    Hayakawa Y, Takeda K, Yagita H, Kakuta S, Iwakura Y, Van Kaer L, Saiki I, Okumura K (2001) Critical contribution of IFN-gamma and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of alpha-galactosylceramide. Eur J Immunol 31:1720–1727PubMedCrossRefGoogle Scholar
  39. 39.
    Burdin N, Brossay L, Koezuka Y, Smiley ST, Grusby MJ, Gui M, Taniguchi M, Hayakawa K, Kronenberg M (1998) Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NKT lymphocytes. J Immunol 161:3271–3281PubMedGoogle Scholar
  40. 40.
    Yang YF, Tomura M, Ono S, Hamaoka T, Fujiwara H (2000) Requirement for IFN-gamma in IL-12 production induced by collaboration between v(alpha)14(+) NKT cells and antigen-presenting cells. Int Immunol 12:1669–1675PubMedCrossRefGoogle Scholar
  41. 41.
    Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199:1607–1618PubMedCrossRefGoogle Scholar
  42. 42.
    Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y, Sato M, Takeda K, Okumura K, Van Kaer L et al (1999) The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 189:1121–1128PubMedCrossRefGoogle Scholar
  43. 43.
    Fuji N, Ueda Y, Fujiwara H, Toh T, Yoshimura T, Yamagishi H (2000) Antitumor effect of alpha-galactosylceramide (KRN7000) on spontaneous hepatic metastases requires endogenous interleukin 12 in the liver. Clin Cancer Res 6:3380–3387PubMedGoogle Scholar
  44. 44.
    Tomura M, Yu WG, Ahn HJ, Yamashita M, Yang YF, Ono S, Hamaoka T, Kawano T, Taniguchi M, Koezuka Y et al (1999) A novel function of Valpha14+ CD4+NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J Immunol 163:93–101PubMedGoogle Scholar
  45. 45.
    Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM (2003) Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8. T cell immunity to a coadministered protein. J Exp Med 198:267–279PubMedCrossRefGoogle Scholar
  46. 46.
    Osada T, Morse MA, Lyerly HK, Clay TM (2005) Ex vivo expanded human CD4+ regulatory NKT cells suppress expansion of tumor antigen-specific CTLs. Int Immunol 17:1143–1155PubMedCrossRefGoogle Scholar
  47. 47.
    Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A (1999) Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163:4647–4650PubMedGoogle Scholar
  48. 48.
    Eberl G, MacDonald HR (2000) Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30:985–992PubMedCrossRefGoogle Scholar
  49. 49.
    Eberl G, Brawand P, MacDonald HR (2000) Selective bystander proliferation of memory CD4+ and CD8+ T cells upon NKT or T cell activation. J Immunol 165:4305–4311PubMedGoogle Scholar
  50. 50.
    Nishimura T, Kitamura H, Iwakabe K, Yahata T, Ohta A, Sato M, Takeda K, Okumura K, Van Kaer L, Kawano T et al (2000) The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int Immunol 12:987–994PubMedCrossRefGoogle Scholar
  51. 51.
    Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC, Wilson JM, Schmieg J, Kronenberg M, Nakayama T, Taniguchi M, Koezuka Y, Tsuji M (2002) Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med 195:617–624PubMedCrossRefGoogle Scholar
  52. 52.
    Nakagawa R, Inui T, Nagafune I, Tazunoki Y, Motoki K, Yamauchi A, Hirashima M, Habu Y, Nakashima H, Seki S (2004) Essential role of bystander cytotoxic CD122+CD8+ T cells for the antitumor immunity induced in the liver of mice by alpha-galactosylceramide. J Immunol 172:6550–6557PubMedGoogle Scholar
  53. 53.
    Hayakawa Y, Takeda K, Yagita H, Smyth MJ, Van Kaer L, Okumura K, Saiki I (2002) IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood 100:1728–1733PubMedGoogle Scholar
  54. 54.
    Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N, Yagita H, Okumura K (2001) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 193:661–670PubMedCrossRefGoogle Scholar
  55. 55.
    Nakagawa R, Nagafune I, Tazunoki Y, Ehara H, Tomura H, Iijima R, Motoki K, Kamishohara M, Seki S (2001) Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by alpha-galactosylceramide in mice. J Immunol 166:6578–6584PubMedGoogle Scholar
  56. 56.
    Fujii S, Shimizu K, Kronenberg M, Steinman RM (2002) Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol 3:867–874PubMedCrossRefGoogle Scholar
  57. 57.
    Uldrich AP, Crowe NY, Kyparissoudis K, Pellicci DG, Zhan Y, Lew AM, Bouillet P, Strasser A, Smyth MJ, Godfrey DI (2005) NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol 175:3092–3101PubMedGoogle Scholar
  58. 58.
    Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L, Wang CR, Joyce S, Van Kaer L (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115:2572–2583PubMedCrossRefGoogle Scholar
  59. 59.
    Fujii S, Shimizu K, Steinman RM, Dhodapkar MV (2003) Detection and activation of human Valpha24+ natural killer T cells using alpha-galactosyl ceramide-pulsed dendritic cells. J Immunol Methods 272:147–159PubMedCrossRefGoogle Scholar
  60. 60.
    Van der Vliet HJ, Nishi N, Koezuka Y, von Blomberg BM, van den Eertwegh AJ, Porcelli SA, Pinedo HM, Scheper RJ, Giaccone G (2001) Potent expansion of human natural killer T cells using alpha-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J Immunol Methods 247:61–72PubMedCrossRefGoogle Scholar
  61. 61.
    Bezbradica JS, Stanic AK, Matsuki N, Bour-Jordan H, Bluestone JA, Thomas JW, Unutmaz D, Van Kaer L, Joyce S (2005) Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo. J Immunol 174:4696–4705PubMedGoogle Scholar
  62. 62.
    Schmieg J, Yang G, Franck RW, Van Rooijen N, Tsuji M (2005) Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc Natl Acad Sci U S A 102:1127–1132PubMedCrossRefGoogle Scholar
  63. 63.
    Toura I, Kawano T, Akutsu Y, Nakayama T, Ochiai T, Taniguchi M (1999) Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with alpha-galactosylceramide. J Immunol 163:2387–2391PubMedGoogle Scholar
  64. 64.
    Smyth MJ, Wallace ME, Nutt SL, Yagita H, Godfrey DI, Hayakawa Y (2005) Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. J Exp Med 201:1973–1985PubMedCrossRefGoogle Scholar
  65. 65.
    Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, Koseki H, Kanno M, Taniguchi M (1997) Requirement for Valpha14. NKT cells in IL-12-mediated rejection of tumors. Science 278:1623–1626PubMedCrossRefGoogle Scholar
  66. 66.
    Takeda K, Seki S, Ogasawara K, Anzai R, Hashimoto W, Sugiura K, Takahashi M, Satoh M, Kumagai K (1996) Liver NK1.1+ CD4+ alpha beta T cells activated by IL-12 as a major effector in inhibition of experimental tumor metastasis. J Immunol 156:3366–3373PubMedGoogle Scholar
  67. 67.
    Kobayashi T, Shiiba K, Satoh M, Hashimoto W, Mizoi T, Matsuno S, Takeda K (2002) Interleukin-12 administration is more effective for preventing metastasis than for inhibiting primary established tumors in a murine model of spontaneous hepatic metastasis. Surg Today 32:236–242PubMedCrossRefGoogle Scholar
  68. 68.
    Shin T, Nakayama T, Akutsu Y, Motohashi S, Shibata Y, Harada M, Kamada N, Shimizu C, Shimizu E, Saito T et al (2001) Inhibition of tumor metastasis by adoptive transfer of IL-12-activated Valpha14. NKT cells. Int J Cancer 91:523–528PubMedCrossRefGoogle Scholar
  69. 69.
    Smyth MJ, Taniguchi M, Street SE (2000) The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 165:2665–2670PubMedGoogle Scholar
  70. 70.
    Takeda K, Hayakawa Y, Atsuta M, Hong S, Van Kaer L, Kobayashi K, Ito M, Yagita H, Okumura K (2000) Relative contribution of NK and NKT cells to the anti-metastatic activities of IL-12. Int Immunol 12:909–914PubMedCrossRefGoogle Scholar
  71. 71.
    Leite-De-Moraes MC, Hameg A, Pacilio M, Koezuka Y, Taniguchi M, Van Kaer L, Schneider E, Dy M, Herbelin A (2001) IL-18 enhances IL-4 production by ligand-activated NKT lymphocytes: a pro-Th2 effect of IL-18 exerted through NKT cells. J Immunol 166:945–951PubMedGoogle Scholar
  72. 72.
    Baxevanis CN, Gritzapis AD, Papamichail M (2003) In vivo antitumor activity of NKT cells activated by the combination of IL-12 and IL-18. J Immunol 171:2953–2959PubMedGoogle Scholar
  73. 73.
    Morris ES, MacDonald KP, Rowe V, Banovic T, Kuns RD, Don AL, Bofinger HM, Burman AC, Olver SD, Kienzle N et al (2005) NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J Clin Invest 115:3093–3103PubMedCrossRefGoogle Scholar
  74. 74.
    Eberl G, Lees R, Smiley ST, Taniguchi M, Grusby MJ, MacDonald HR (1999) Tissue-specific segregation of CD1d-dependent and CD1d-independent NKT cells. J Immunol 162:6410–6419PubMedGoogle Scholar
  75. 75.
    Hammond KJ, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M, Smyth MJ, van Driel IR, Scollay R, Baxter AG et al (1999) NKT cells are pheno-typically and functionally diverse. Eur J Immunol 29:3768–3781PubMedCrossRefGoogle Scholar
  76. 76.
    Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625–636PubMedCrossRefGoogle Scholar
  77. 77.
    Lee PT, Benlagha K, Teyton L, Bendelac A (2002) Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med 195:637–641PubMedCrossRefGoogle Scholar
  78. 78.
    Berzins SP, Cochrane AD, Pellicci DG, Smyth MJ, Godfrey DI (2005) Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur J Immunol 35:1399–1407PubMedCrossRefGoogle Scholar
  79. 79.
    Takahashi T, Chiba S, Nieda M, Azuma T, Ishihara S, Shibata Y, Juji T, Hirai H (2002) Cutting edge: analysis of human V alpha 24+CD8+ NKT cells activated by alpha-galactosylceramide-pulsed monocyte-derived dendritic cells. J Immunol 168:3140–3144PubMedGoogle Scholar
  80. 80.
    Rogers PR, Matsumoto A, Naidenko O, Kronenberg M, Mikayama T, Kato S (2004) Expansion of human Valpha24+ NKT cells by repeated stimulation with KRN(7000). J Immunol Methods 285:197–214PubMedCrossRefGoogle Scholar
  81. 81.
    Lin H, Nieda M, Nicol AJ (2004) Differential proliferative response of NKT cell subpopulations to in vitro stimulation in presence of different cytokines. Eur J Immunol 34:2664–2671PubMedCrossRefGoogle Scholar
  82. 82.
    Kenna T, Golden-Mason L, Porcelli SA, Koezuka Y, Hegarty JE, O’Farrelly C, Doherty DG (2003) NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 171:1775–1779PubMedGoogle Scholar
  83. 83.
    Wang ZY, Kusam S, Munugalavadla V, Kapur R, Brutkiewicz RR, Dent AL (2006) Regulation of Th2 cytokine expression in NKT cells: unconventional use of Stat6, GATA-3, and NFAT2. J Immunol 176:880–888PubMedGoogle Scholar
  84. 84.
    Matsuda JL, Gapin L, Baron JL, Sidobre S, Stetson DB, Mohrs M, Locksley RM, Kronenberg M (2003) Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci U S A 100:8395–8400PubMedCrossRefGoogle Scholar
  85. 85.
    Maeda M, Lohwasser S, Yamamura T, Takei F (2001) Regulation of NKT cells by Ly49: analysis of primary NKT cells and generation of NKT cell line. J Immunol 167:4180–4186PubMedGoogle Scholar
  86. 86.
    Kim CH, Butcher EC, Johnston B (2002) Distinct subsets of human Valpha24-invariant NKT cells: cytokine responses and chemokine receptor expression. Trends Immunol 23:516–519PubMedCrossRefGoogle Scholar
  87. 87.
    Thomas SY, Hou R, Boyson JE, Means TK, Hess C, Olson DP, Strominger JL, Brenner MB, Gumperz JE, Wilson SB et al (2003) CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J Immunol 171:2571–2580PubMedGoogle Scholar
  88. 88.
    Johnston B, Kim CH, Soler D, Emoto M, Butcher EC (2003) Differential chemokine responses and homing patterns of murine TCR alpha beta NKT cell subsets. J Immunol 171:2960–2969PubMedGoogle Scholar
  89. 89.
    Matsuyoshi H, Hirata S, Yoshitake Y, Motomura Y, Fukuma D, Kurisaki A, Nakatsura T, Nishimura Y, Senju S (2005) Therapeutic effect of alpha-galactosylceramide-loaded dendritic cells genetically engineered to express SLC/CCL21 along with tumor antigen against peritoneally disseminated tumor cells. Cancer Sci 96:889–896PubMedCrossRefGoogle Scholar
  90. 90.
    Lin H, Nieda M, Rozenkov V, Nicol AJ (2006) Analysis of the effect of different NKT cell subpopulations on the activation of CD4 and CD8. T cells NK cells, and B cells. Exp Hematol 34:289–295PubMedCrossRefGoogle Scholar
  91. 91.
    Van Kaer L (2005) Alpha-galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 5:31–42PubMedCrossRefGoogle Scholar
  92. 92.
    Kawano T, Nakayama T, Kamada N, Kaneko Y, Harada M, Ogura N, Akutsu Y, Motohashi S, Iizasa T, Endo H et al (1999) Antitumor cytotoxicity mediated by ligand-activated human V alpha24. NKT cells. Cancer Res 59:5102–5105PubMedGoogle Scholar
  93. 93.
    Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, Balk SP, Exley MA (2001) Loss of IFN-gamma production by invariant NKT cells in advanced cancer. J Immunol 167:4046–4050PubMedGoogle Scholar
  94. 94.
    Metelitsa LS, Weinberg KI, Emanuel PD, Seeger RC (2003) Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia 17:1068–1077PubMedCrossRefGoogle Scholar
  95. 95.
    Fais F, Morabito F, Stelitano C, Callea V, Zanardi S, Scudeletti M, Varese P, Ciccone E, Grossi CE (2004) CD1d is expressed on B-chronic lymphocytic leukemia cells and mediates alpha-galactosylceramide presentation to natural killer T lymphocytes. Int J Cancer 109:402–411PubMedCrossRefGoogle Scholar
  96. 96.
    Takahashi T, Haraguchi K, Chiba S, Yasukawa M, Shibata Y, Hirai H (2003) Valpha24+ natural killer T-cell responses against T-acute lymphoblastic leukaemia cells: implications for immunotherapy. Br J Haematol 122:231–239PubMedCrossRefGoogle Scholar
  97. 97.
    Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM, Krasovsky J (2003) A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 197:1667–1676PubMedCrossRefGoogle Scholar
  98. 98.
    Motohashi S, Kobayashi S, Ito T, Magara KK, Mikuni O, Kamada N, Iizasa T, Nakayama T, Fujisawa T, Taniguchi M (2002) Preserved IFN-alpha production of circulating Valpha24. NKT cells in primary lung cancer patients. Int J Cancer 102:159–165PubMedCrossRefGoogle Scholar
  99. 99.
    Konishi J, Yamazaki K, Yokouchi H, Shinagawa N, Iwabuchi K, Nishimura M (2004) The characteristics of human NKT cells in lung cancer-CD1d independent cytotoxicity against lung cancer cells by NKT cells and decreased human NKT cell response in lung cancer patients. Hum Immunol 65:1377–1388PubMedCrossRefGoogle Scholar
  100. 100.
    Tachibana T, Onodera H, Tsuruyama T, Mori A, Nagayama S, Hiai H, Imamura M (2005) Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res 11:7322–7327PubMedCrossRefGoogle Scholar
  101. 101.
    Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg BM, Scheper RJ, van der Vliet HJ, van den Eertwegh AJ et al (2002) A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702–3709PubMedGoogle Scholar
  102. 102.
    Nieda M, Okai M, Tazbirkova A, Lin H, Yamaura A, Ide K, Abraham R, Juji T, Macfarlane DJ, Nicol AJ (2004) Therapeutic activation of Valpha24+Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103:383–389PubMedCrossRefGoogle Scholar
  103. 103.
    Ishikawa A, Motohashi S, Ishikawa E, Fuchida H, Higashino K, Otsuji M, Iizasa T, Nakayama T, Taniguchi M, Fujisawa T (2005) A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11:1910–1917PubMedCrossRefGoogle Scholar
  104. 104.
    Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R et al (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503–1517PubMedCrossRefGoogle Scholar
  105. 105.
    Schmieg J, Yang G, Franck RW, Tsuji M (2003) Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-galactosylceramide. J Exp Med 198:1631–1641PubMedCrossRefGoogle Scholar
  106. 106.
    Miyamoto K, Miyake S, Yamamura T (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413:531–534PubMedCrossRefGoogle Scholar
  107. 107.
    Oki S, Chiba A, Yamamura T, Miyake S (2004) The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J Clin Invest 113:1631–1640PubMedCrossRefGoogle Scholar
  108. 108.
    Stanic AK, Shashidharamurthy R, Bezbradica JS, Matsuki N, Yoshimura Y, Miyake S, Choi EY, Schell TD, Van Kaer L, Tevethia SS et al (2003) Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Va14Ja18 natural T(iNKT) cell receptor [corrected]. J Immunol 171:4539–4551PubMedGoogle Scholar
  109. 109.
    Nakui M, Ohta A, Sekimoto M, Sato M, Iwakabe K, Yahata T, Kitamura H, Koda T, Kawano T, Makuuchi H et al (2000) Potentiation of antitumor effect of NKT cell ligand, alpha-galactosylceramide by combination with IL-12 on lung metastasis of malignant melanoma cells. Clin Exp Metastasis 18:147–153PubMedCrossRefGoogle Scholar
  110. 110.
    Liu K, Idoyaga J, Charalambous A, Fujii S, Bonito A, Mordoh J, Wainstok R, Bai XF, Liu Y, Steinman RM (2005) Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J Exp Med 202:1507–1516PubMedCrossRefGoogle Scholar
  111. 111.
    Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171:5140–5147PubMedGoogle Scholar
  112. 112.
    Matsui S, Ahlers JD, Vortmeyer AO, Terabe M, Tsukui T, Carbone DP, Liotta LA, Berzofsky JA (1999) A model for CD8+ CTL tumor immunosurveillance and regulation of tumor escape by CD4 T cells through an effect on quality of CTL. J Immunol 163:184–193PubMedGoogle Scholar
  113. 113.
    Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD, Carbone DP, Paul WE, Berzofsky JA (2000) NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 1:515–520PubMedCrossRefGoogle Scholar
  114. 114.
    Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B et al (2003) Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198:1741–1752PubMedCrossRefGoogle Scholar
  115. 115.
    Park JM, Terabe M, van den Broeke LT, Donaldson DD, Berzofsky JA (2005) Unmasking immunosurveillance against a syngeneic colon cancer by elimination of CD4+ NKT regulatory cells and IL-13. Int J Cancer 114:80–87PubMedCrossRefGoogle Scholar
  116. 116.
    Ostrand-Rosenberg S, Clements VK, Terabe M, Park JM, Berzofsky JA, Dissanayake SK (2002) Resistance to metastatic disease in STAT6-deficient mice requires hemopoietic and nonhemopoietic cells and is IFN-gamma dependent. J Immunol 169:5796–5804PubMedGoogle Scholar
  117. 117.
    Ostrand-Rosenberg S, Grusby MJ, Clements VK (2000) Cutting edge: STAT6-deficient mice have enhanced tumor immunity to primary and metastatic mammary carcinoma. J Immunol 165:6015–6019PubMedGoogle Scholar
  118. 118.
    Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res 65:11743–11751PubMedCrossRefGoogle Scholar
  119. 119.
    Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y, Godfrey DI, Ostrand-Rosenberg S, Smyth MJ, Berzofsky JA (2005) A nonclassical non-Valpha14Jalpha18. CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202:1627–1633PubMedCrossRefGoogle Scholar
  120. 120.
    Sfondrini L, Besusso D, Zoia MT, Rodolfo M, Invernizzi AM, Taniguchi M, Nakayama T, Colombo MP, Menard S, Balsari A (2002) Absence of the CD1 molecule up-regulates antitumor activity induced by CpG oligodeoxynucleotides in mice. J Immunol 169:151–158PubMedGoogle Scholar
  121. 121.
    Behar SM, Podrebarac TA, Roy CJ, Wang CR, Brenner MB (1999) Diverse TCRs recognize murine CD1. J Immunol 162:161–167PubMedGoogle Scholar
  122. 122.
    Park SH, Weiss A, Benlagha K, Kyin T, Teyton L, Bendelac A (2001) The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J Exp Med 193:893–904PubMedCrossRefGoogle Scholar
  123. 123.
    Chiu YH, Park SH, Benlagha K, Forestier C, Jayawardena-Wolf J, Savage PB, Teyton L, Bendelac A (2002) Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nat Immunol 3:55–60PubMedCrossRefGoogle Scholar
  124. 124.
    Duarte N, Stenstrom M, Campino S, Bergman ML, Lundholm M, Holmberg D, Cardell SL (2004) Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells. J Immunol 173:3112–3118PubMedGoogle Scholar
  125. 125.
    Exley MA, He Q, Cheng O, Wang RJ, Cheney CP, Balk SP, Koziel MJ (2002) Cutting edge: compartmentalization of Th1-like noninvariant CD1d-reactive T cells in hepatitis C virus-infected liver. J Immunol 168:1519–1523PubMedGoogle Scholar
  126. 126.
    Exley MA, Tahir SM, Cheng O, Shaulov A, Joyce R, Avigan D, Sackstein R, Balk SP (2001) A major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J Immunol 167:5531–5534PubMedGoogle Scholar
  127. 127.
    Yue SC, Shaulov A, Wang R, Balk SP, Exley MA (2005) CD1d ligation on human monocytes directly signals rapid NF-kappaB activation and production of bioactive IL-12. Proc Natl Acad Sci U S A 102:11811–11816PubMedCrossRefGoogle Scholar
  128. 128.
    Colgan SP, Hershberg RM, Furuta GT, Blumberg RS (1999) Ligation of intestinal epithelial CD1d induces bioactive IL-10: critical role of the cytoplasmic tail in autocrine signaling. Proc Natl Acad Sci U S A 96:13938–13943PubMedCrossRefGoogle Scholar
  129. 129.
    Chang CS, Brossay L, Kronenberg M, Kane KP (1999) The murine nonclassical class I major histocompatibility complex-like CD1.1 molecule protects target cells from lymphokine-activated killer cell cytolysis. J Exp Med 189:483–491PubMedCrossRefGoogle Scholar
  130. 130.
    Huang MM, Borszcz P, Sidobre S, Kronenberg M, Kane KP (2004) CD1d1 displayed on cell size beads identifies and enriches an NK cell population negatively regulated by CD1d1. J Immunol 172:5304–5312PubMedGoogle Scholar
  131. 131.
    Maeda M, Carpenito C, Russell RC, Dasanjh J, Veinotte LL, Ohta H, Yamamura T, Tan R, Takei F (2005) Murine CD160, Ig-like receptor on NK cells and NKT cells, recognizes classical and nonclassical MHC class I and regulates NK cell activation. J Immunol 175:4426–4432PubMedGoogle Scholar
  132. 132.
    Hayakawa Y, Godfrey DI, Smyth MJ (2004) Alpha-galactosylceramide: potential immunomodulatory activity and future application. Curr Med Chem 11:241–252PubMedCrossRefGoogle Scholar
  133. 133.
    Smyth MJ, Crowe NY, Hayakawa Y, Takeda K, Yagita H, Godfrey DI (2002) NKT cells—conductors of tumor immunity? Curr Opin Immunol 14:165–171PubMedCrossRefGoogle Scholar
  134. 134.
    Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, Pise-Masison CA, Radonovich MF, Brady JN, Restifo NP et al (2005) Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201:139–148PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. B. Swann
    • 2
  • J. M. C. Coquet
    • 1
  • M. J. Smyth
    • 2
  • D. I. Godfrey
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleAustralia
  2. 2.Cancer Immunology Program, Trescowthick LaboratoriesPeter MacCallum Cancer CentreEast MelbourneAustralia

Personalised recommendations