Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 314))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Umetsu DT, McIntire JJ, Akbari O, Macaubus C, DeKruyff RH (2002) Asthma: an epidemic of dysregulated immunity. Nat Immunol 3:715–720

    Article  PubMed  CAS  Google Scholar 

  2. Mannino DM, Homa DM, Pertowski CA et al (1998) Surveillance for asthma — United States, 1960–1995. MMWR CDC Surveill Summ 47:1–27

    PubMed  CAS  Google Scholar 

  3. McNally N, Philips D, Williams H (1998) The problem of atopic eczema: aetiological clues from the environment and lifestyles. Soc Sci Med 46:729–741

    Article  PubMed  CAS  Google Scholar 

  4. Blumenthal J, Blumenthal MN (1996) Immunogenetics of allergy and asthma. Immunol Allergy Clin North Am 16:517–534

    Article  Google Scholar 

  5. Weiss KB, Sullivan SD (2001) The health economics of asthma and rhinitis. I. Asssessing the economic impact. J Allergy Clin Immunol 107:3–8

    Article  PubMed  CAS  Google Scholar 

  6. Zaas D, Schwartz DA (2003) Genetics of environmental asthma. Semin Respir Crit Care Med 24:185–195

    Article  PubMed  Google Scholar 

  7. McIntire JJ, Umetsu DT, DeKruyff RH (2004) TIM-1, a novel allergy and asthma susceptibility gene. Springer Semin Immunopathol 25:335–348

    Article  PubMed  Google Scholar 

  8. Blumenthal MN (2005) The role of genetics in the development of asthma and atopy. Curr Opin Allergy Clin Immunol 5:141–145

    PubMed  CAS  Google Scholar 

  9. McIntire JJ et al (2005) Hepatitis A virus link to atopic disease. Nature 425:576

    Article  CAS  Google Scholar 

  10. Umetsu SE, Lee WL, McIntire JJ et al (2005) TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol 6:447–454

    Article  PubMed  CAS  Google Scholar 

  11. Maizels RM (2005) Infections and allergy—helminths, hygiene and host immune regulation. Curr Opin Immunol 17:656–661

    Article  PubMed  CAS  Google Scholar 

  12. Blaser K (2004) Allergy and hypersensitivity—From genes to phenotype—Editorial overview. Curr Opin Immunol 16:685–688

    Article  PubMed  CAS  Google Scholar 

  13. Upham JW, Holt PG (2005) Environment and development of atopy. Curr Opin Allergy Clin Immunol 5:167–172

    Article  PubMed  Google Scholar 

  14. Kay AB (2001) Advances in immunology: allergy and allergic diseases: first of two parts. N Engl J Med 344:30–37

    Article  PubMed  CAS  Google Scholar 

  15. Kay AB (2001) Advances in immunology—allergy and allergic diseases—second of two parts. N Engl J Med 344:109–113

    Article  PubMed  CAS  Google Scholar 

  16. Akbari O et al (2006) CD4+ invariant T-cell-receptor plus natural killer T cells in bronchial asthma. N Engl J Med 354:1117–1129

    Article  PubMed  CAS  Google Scholar 

  17. Akbari O et al (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9:582–588

    Article  PubMed  CAS  Google Scholar 

  18. Lisbonne M et al (2003) Cutting edge: invariant V alpha 14. NKT cells dare required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J Immunol 171:1637–1641

    PubMed  CAS  Google Scholar 

  19. Mannino DM et al (2002) Surveillance for asthma — United States 1980–1999. MMWR CDC Surveill Summ 51:1

    Google Scholar 

  20. Herrick CA, Bottomly K (2003) To respond or not to respond: T cells in allergic asthma. Nat Rev Immunol 3:405–412

    Article  PubMed  CAS  Google Scholar 

  21. Robinson DS et al (1992) Predominant Th2-like bronchoalveolar lymphocyte-t population in atopic asthma. N Engl J Med 326:298–304

    Article  PubMed  CAS  Google Scholar 

  22. Meyer EH et al (2006) Glycolipid activation of invariant T cell receptor(+) NKT cells is sufficient to induce airway hyperreactivity independent of conventional CD4(+) T cells. Proc Natl Acad Sci U S A 103:2782–2787

    Article  PubMed  CAS  Google Scholar 

  23. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) Opinion—NKT cells: what’s in a name? Nat Rev Immunol 4:231–237

    Article  PubMed  CAS  Google Scholar 

  24. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H (2003) The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Ann Rev Immunol 21:483

    Article  CAS  Google Scholar 

  25. Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Ann Rev Immunol 2:557

    Google Scholar 

  26. Kinjo Y et al (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525

    Article  PubMed  CAS  Google Scholar 

  27. Zhou DP et al (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789

    Article  PubMed  CAS  Google Scholar 

  28. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Ann Rev Immunol 23:877–900

    Article  CAS  Google Scholar 

  29. Exley MA, Koziel MJ (2004) To be or not to be NKT: natural killer T cells in the liver. Hepatology 40:1033–1040

    Article  PubMed  Google Scholar 

  30. Seino K, Taniguchi M (2005) Functionally distinct NKT cell subsets and subtypes. J Exp Med 202:1623–1626

    Article  PubMed  CAS  Google Scholar 

  31. Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388

    Article  PubMed  CAS  Google Scholar 

  32. Mattner J et al (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529

    Article  PubMed  CAS  Google Scholar 

  33. Zeng DF et al (1999) Bone marrow NK1.1-and NK1.1+ T cells reciprocally regulate acute graft versus host disease. J Exp Med 189:1073–1081

    Article  PubMed  CAS  Google Scholar 

  34. Crowe NY et al (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202:1279–1288

    Article  PubMed  CAS  Google Scholar 

  35. Cui JQ et al (1999) Inhibition of T helper cell type 2 cell differentiation and immunoglobulin E response by ligand-activated Valpha14 natural killer T cells. J Exp Med 190:783–792

    Article  PubMed  CAS  Google Scholar 

  36. Korsgren M et al (1999) Natural killer cell determine development of allergen-induced eosinophilic airway inflammation in mice. J Exp Med 189:553–562

    Article  PubMed  CAS  Google Scholar 

  37. Brown DR et al (1996) Beta-2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J Exp Med 184:1295–1304

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Y, Rogers KH, Lewis DB (1996) Beta-2-microglobulin-dependent T cells are dispensable for allergen-induced T helper 2 responses. J Exp Med 184:1507–1512

    Article  PubMed  CAS  Google Scholar 

  39. Kim HS et al (1999) Biochemical characterization of CD1d expression in the absence of beta(2)-microglobulin. J Biol Chem 274:9289–9295

    Article  PubMed  CAS  Google Scholar 

  40. Amano M et al (1998) CD1 expression defines subsets of follicular and marginal zone B cells in the spleen: beta(2)-microglobulin-dependent and independent forms. J Immunol 161:1710–1717

    PubMed  CAS  Google Scholar 

  41. Maeda M, Shadeo A, MacFadyen AM, Takei F (2004) CD1d-independent NKT cells in beta(2)-microglobulin-deficient mice have hybrid phenotype and function of NK and T cells. J Immunol 172:6115–6122

    PubMed  CAS  Google Scholar 

  42. Smiley ST, Kaplan MH, Grusby MJ (1997) Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Sci (Washington DC) 275:977–979

    Article  CAS  Google Scholar 

  43. Kim JO et al (2004) Asthma is induced by intranasal coadministration of allergen and natural killer T-cell ligand in a mouse model. J Allergy Clin Immunol 114:1332–1338

    Article  PubMed  CAS  Google Scholar 

  44. Yoshimoto T, Bendelac A, Watson C, Hu-Li K, Paul W (1995) Role of NK1.1+ T cells in Th2 responses and in immunoglobulin E production. Science 270:1845–1847

    Article  PubMed  CAS  Google Scholar 

  45. Vonderweid T, Beebe AM, Roopenian DC, Coffman RL (1996) Early production of IL-4 and induction of Th2 responses in the lymph node originate from an MHC class I-independent CD4(+)NK1.1(−)T cell population. J Immunol 157:4421–4427

    CAS  Google Scholar 

  46. Yoshimoto T, Bendelac A, Huli J, Paul WE (1995) Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+ T cells that promptly produce interleukin 4. Proc Natl Acad Sci U S A 92:11931–11934

    Article  PubMed  CAS  Google Scholar 

  47. Bendelac A, Hunziker RD, Lantz O (1996) Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J Exp Med 184:1285–1293

    Article  PubMed  CAS  Google Scholar 

  48. Mattner J et al (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529

    Article  PubMed  CAS  Google Scholar 

  49. Stein-Streilein J (2003) Invariant NKT cells as initiators, licensors, and facilitators of the adaptive immune response. J Exp Med 198:1779–1783

    Article  PubMed  CAS  Google Scholar 

  50. Lin M, Rikihisa Y (2003) Erlichia chaffeensis and Anaplasma phaocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect Immun 71:5325

    Google Scholar 

  51. Trottein F, Mallevaey T, Faveeuw C, Capron M, Leite-de-Moraes M (2006) Role of the natural killer T lymphocyte in Th2 responses during allergic asthma and helminth parasitic diseases. Chem Immunol Allergy 90:113–127

    Article  PubMed  CAS  Google Scholar 

  52. Mallevaey T et al (2006) Activation of invariant NKT cells by the helminth parasite g1 Schistosoma mansoni. J Immunol 176:2476–2485

    PubMed  CAS  Google Scholar 

  53. Agea E et al (2005) Human CD1-restricted T cell recognition of lipids from pollens. J Exp Med 202:295–308

    Article  PubMed  CAS  Google Scholar 

  54. Ikegami Y, Yokoyama A, Haruta Y, Hiyama K, Kohno N (2004) Circulating natural killer T cells in patients with asthma. J Asthma 41:877–882

    Article  PubMed  CAS  Google Scholar 

  55. Sen Y et al (2005) V alpha 24-invariant NKT cells from patients with allergic asthma express CCR9 at high frequency and induce Th2 bias of CD3(+) T cells upon CD226 engagement. J Immunol 175:4914–4926

    PubMed  Google Scholar 

  56. Milner JD et al (1999) Differential responses of invariant V alpha 24J alpha QT cells and MHC class II-restricted CD4(+) T cells to dexamethasone. J Immunol 163:2522–2529

    PubMed  CAS  Google Scholar 

  57. Tamada K, Harada M, Abe K, Li TL, Nomoto K (1998) IL-4-producing NK1.1(+) T cells are resistant to glucocorticoid-induced apoptosis: implications for the Th1/Th2 balance. J Immunol 161:1239–1247

    PubMed  CAS  Google Scholar 

  58. Adcock IM, Ito K (2004) Steroid resistance in asthma: a major problem requiring novel solutions or a non-issue? Curr Opin Pharmacol 4:257–262

    Article  PubMed  CAS  Google Scholar 

  59. Ito K, Chung KF, Adcock IM (2006) Update on glucocorticoid action and resistance. J Allergy Clin Immunol 117:522–543

    Article  PubMed  CAS  Google Scholar 

  60. Hachem P et al (2005) Alpha-galactosylceramide-induced iNKT cells suppress experimental allergic asthma in sensitized mice: role of IFN-gamma. Eur J Immunol 35:2793–2802

    Article  PubMed  CAS  Google Scholar 

  61. Matsuda H et al (2005) Alpha-galactosylceramide, a ligand of natural killer T cells, inhibits allergic airway inflammation. Am J Respir Cell Mol Biol 33:22–31

    Article  PubMed  CAS  Google Scholar 

  62. Morishima Y et al (2005) Suppression of eosinophilic airway inflammation by treatment with alpha-galactosylceramide. Eur J Immunol 35:2803–2814

    Article  PubMed  CAS  Google Scholar 

  63. Parekh VV, Wilson MT, Van Kaer L (2005) iNKT-cell responses to glycolipids. Crit Rev Immunol 25:183–213

    Article  PubMed  CAS  Google Scholar 

  64. Matsuda JL et al (2003) Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci U S A 100:8395–8400

    Article  PubMed  CAS  Google Scholar 

  65. Wang ZY et al (2006) Regulation of Th2 cytokine expression in NKT cells: unconventional use of Stat6, GATA-3, and NFAT2. J Immunol 176:880–888

    PubMed  CAS  Google Scholar 

  66. Sherman MA, Secor VH, Lee SK, Lopez RD, Brown MA (1999) STAT6-independent production of IL-4 by mast cells. Eur J Immunol 29:1235–1242

    Article  PubMed  CAS  Google Scholar 

  67. Kim CH, Johnston B, Butcher EC (2002) Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among V alpha 24(+)V beta 11(+) NKT cell subsets with distinct cytokine-producing capacity. Blood 100:11–16

    Article  PubMed  CAS  Google Scholar 

  68. Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625–636

    Article  PubMed  CAS  Google Scholar 

  69. Matsuda JL et al (2001) Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T cell receptor beta repertoire and small clone size. Proc Natl Acad Sci U S A 98:12636–12641

    Article  PubMed  CAS  Google Scholar 

  70. Johnston B et al (2003) Differential chemokine responses and homing patterns of murine TCR alpha beta NKT cell subsets. J Immunol 171:2960–2969

    PubMed  CAS  Google Scholar 

  71. Mi QS, Ly D, Zucker P, McGarry M, Delovitch TL (2004) Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T-cells. Diabetes 53:1303–1310

    Article  PubMed  CAS  Google Scholar 

  72. Sharif S et al (2001) Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nat Med 7:1057–1062

    Article  PubMed  CAS  Google Scholar 

  73. Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A (2002) A thymic precursor to the NKT cell lineage. Science 296:481–482

    Article  Google Scholar 

  74. MacDonald HR (2002) Development and selection of NKT cells. Curr Opin Immunol 14:250–254

    Article  PubMed  CAS  Google Scholar 

  75. Schmieg J, Yang GL, Franck RW, Tsuji M (2003) Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-galactosylceramide. J Exp Med 198:1631–1641

    Article  PubMed  CAS  Google Scholar 

  76. Schmieg J, Yang GG, Franck RW, Van Rooijen NV, Tsuji M (2005) Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc Natl Acad Sci U S A 102:1127–1132

    Article  PubMed  CAS  Google Scholar 

  77. Bezbradica JS et al (2005) Distinct roles of dendritic cells and B cells in Va14Ja18 natural T cell activation in vivo. J Immunol 174:4696–4705

    PubMed  CAS  Google Scholar 

  78. Fujii SI, Liu K, Smith C, Bonito AJ, Steinman RM (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199:1607–1618

    Article  PubMed  CAS  Google Scholar 

  79. Fujii S, Shimizu K, Kronenberg M, Steinman RM (2002) Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol 3:867–874

    Article  PubMed  CAS  Google Scholar 

  80. Lan FS, Zeng DF, Higuchi M, Higgins JP, Strober S (2003) Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: the role of CD1-reactive natural killer T cells. Biol Blood Marrow Transplant 9:355–363

    Article  PubMed  Google Scholar 

  81. Lowsky R et al (2005) Protective conditioning for acute graft-versus-host disease. N Engl J Med 353:1321–1331

    Article  PubMed  CAS  Google Scholar 

  82. Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W (2002) Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17:629–638

    Article  PubMed  CAS  Google Scholar 

  83. Kaser A et al (2004) Natural killer T cells in mucosal homeostasis. In: Weiner H, Mayer L, Strober W (eds) Oral tolerance: new insights and prospects for clinical application. Ann N Y Acad Sci 1029:154–168

    Google Scholar 

  84. Hopkin JM (1997) Mechanisms of enhanced prevalence of asthma and atopy in developed countries. Curr Opin Immunol 9:788–792

    Article  PubMed  CAS  Google Scholar 

  85. Campos RA et al (2003) Cutaneous immunization rapidly activates liver invariant V alpha-14. NKT cells stimulating B-1B cells to initiate T cell recruitment for elicitation of contact sensitivity. J Exp Med 198:1785–1796

    Article  PubMed  CAS  Google Scholar 

  86. Nieuwenhuis EES et al (2005) CD1d and CD1d-restricted iNKT-cells play a pivotal role in contact hypersensitivity. Exp Dermatol 14:250–258

    Article  PubMed  Google Scholar 

  87. Oishi Y et al (2000) CD4(−)CD8(−) T cells bearing invariant V alpha 24J alpha QTCR alpha-chain are decreased in patients with atopic diseases. Clin Exp Immunol 119:404–411

    Article  PubMed  CAS  Google Scholar 

  88. Takahashi T et al (2003) Valpha 24(+) natural killer T cells are markedly decreased in atopic dermatitis patients. Hum Immunol 64:586–592

    PubMed  CAS  Google Scholar 

  89. Magnan A et al (2000) Relationships between natural T cells, atopy IgE levels, and IL-4 production. Allergy (Copenhagen) 55:286–290

    Article  CAS  Google Scholar 

  90. Saubermann LJ et al (2000) Activation of natural killer T cells by alpha-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology 119:119–128

    Article  PubMed  CAS  Google Scholar 

  91. Fuss IJ et al (2004) Nonclassical CD1d-restricted NKT cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 113:1490–1497

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, E.H., DeKruyff, R.H., Umetsu, D.T. (2007). iNKT Cells in Allergic Disease. In: Moody, D.B. (eds) T Cell Activation by CD1 and Lipid Antigens. Current Topics in Microbiology and Immunology, vol 314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69511-0_11

Download citation

Publish with us

Policies and ethics