Advertisement

NKT Cells and Autoimmune Diseases: Unraveling the Complexity

  • S. Miyake
  • T. Yamamura
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 314)

Keywords

Natural Killer Experimental Autoimmune Encephalomyelitis Nonobese Diabetic Mouse Untreated Multiple Sclerosis Patient Serum Transfer Arthritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen IR, Young DB (1991) Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 12:105–110PubMedCrossRefGoogle Scholar
  2. 2.
    Kuchroo VK, Anderson AC, Waldner H, Munder M, Bettelli E, Nicholson LB (2002) T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol 20:101–123PubMedCrossRefGoogle Scholar
  3. 3.
    Wilson SB, Delovitch TL (2003) Janus-like role of regulatory NKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 3:211–222PubMedCrossRefGoogle Scholar
  4. 4.
    Mars LT, Novak J, Liblau RS, Lehuen A (2004) Therapeutic manipulation of NKT cells in autoimmunity: modes of action and potential risks. Trends Immunol 25:471–476PubMedCrossRefGoogle Scholar
  5. 5.
    Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 26:877–900CrossRefGoogle Scholar
  6. 6.
    Kaer LV (2005) α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 5:31–42PubMedCrossRefGoogle Scholar
  7. 7.
    Yu KOA, Porcelli SA (2005) The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy. Immmunol Lett 100:42–55CrossRefGoogle Scholar
  8. 8.
    Cardell SL (2005) The natural killer T lymphocyte: a player in the complex regulation of autoimmune diabetes in non-obese diabetic mice. Clin Exp Immmunol 143:197–202Google Scholar
  9. 9.
    Mars LT, Laloux V, Goude K, Desbois S, Saoudi A, Van Kaer L, Lassmann H, Herbelin A, Lehuen A, Liblau RS (2002) Vα14-Jα281. NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J Immunol 168:6007–6011PubMedGoogle Scholar
  10. 10.
    Teige A, Teiga I, Savasani S, Bockermann R, Mondoc E, Holmdahl R, Issazadel-Navikas S (2004) CD1-dependent regulation of chronic central nervous system inflammation in experimental autoimmune encephalomyelitis. J Immunol 172:186–194PubMedGoogle Scholar
  11. 11.
    Singh AK, Wilson MT, Hong S, Oliveres-Villagomez D, Du C, Stanic AK, Joyce S, Siriam S, Koezka Y, Van Kaer L (2001) Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 194:1801–1811PubMedCrossRefGoogle Scholar
  12. 12.
    Furlan R, Bergami A, Cantarella D, Brambilla E, Taniguchi M, Dellabona P, Casorati G, Martino G (2003) Activation of invariant NKT cells by αGalCer administration protects mice from MOG35–55-induced EAE: critical roles for administration route and IFN-γ. Eur J Immunol 33:1830–1838PubMedCrossRefGoogle Scholar
  13. 13.
    Jahng AW, Maricic I, Pedersen B, Burdin N, Naidenko O (2001) Activatin of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 194:1789–1799PubMedCrossRefGoogle Scholar
  14. 14.
    Pal E, Tabira T, Kawano T, Taniguchi M, Miyake S, Yamamura T (2001) Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of Vα 14 NKT cells. J Immunol 166:662–668PubMedGoogle Scholar
  15. 15.
    Miyamoto K, Miyake S, Yamamura T (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing Th2 bias of natural killer T cells. Nature 413:531–534PubMedCrossRefGoogle Scholar
  16. 16.
    Oki S, Chiba A, Yamamura T, Miyake S (2004) The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J Clin Inv 113:1631–1640CrossRefGoogle Scholar
  17. 17.
    Goff RD, Gao Y, Mattner J, Zhou D, Yin N, Cantu C, Teyton L, Bendelac A, Savage PB (2004) Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T ells. J Am Chem Soc 126:13602–13603PubMedCrossRefGoogle Scholar
  18. 18.
    Oki S, Tomi C, Yamamura T, Miyake S (2005) Preferential Th2 polarization by OCH is supported by incompetent NKT cell induction of CD40L and following production of inflammatory cytokines by bystander cells in vivo. Int Immunol 17:1619–1629PubMedCrossRefGoogle Scholar
  19. 19.
    Gombert JM, Herbelin A, Tancrede-Bohin E, Dy M, Carnaud C, Bach JF (1996) Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 126:2989–2998CrossRefGoogle Scholar
  20. 20.
    Falcone M, Yeung B, Tucker L, Rodriguez E, Sarvetnick N (1999) A defect in interleukin 12-induced activation and interferon gamma secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus. J Exp Med 190:963–972PubMedCrossRefGoogle Scholar
  21. 21.
    Godfrey DI, Kinder SJ, Silvera P, Baxter AG (1997) Flow cytometric study of T cell development in NOD mice reveals a deficiency in alpha-beta TCR+CDR-CD8-tymocytes. J Autoimmun 10:279–285PubMedCrossRefGoogle Scholar
  22. 22.
    Poulton LD, Smyth MJ, Hawke CG, Silveira P, Shepherd D, Naidenko OV, Godfrey DI, Baxter AG (2001) Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. Int Immunol 13:887–896PubMedCrossRefGoogle Scholar
  23. 23.
    Shi FD, Flodstrom M, Balasa B, Kim SH, van Gunst K, Strominger JL, Wilson SB, Sarvetnick N (2001) Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci U S A 98:6777–6782PubMedCrossRefGoogle Scholar
  24. 24.
    Naumov YN, Bahjat KS, Gausling R, Abraham R, Exley MA, Koezuka Y, Balk SB, Stominger JL, Clare-Salzer M, Wilson SB (2001) Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl. Acad Sci U S A 98:13838–13843PubMedCrossRefGoogle Scholar
  25. 25.
    Wang B, Geng Y-B, Wang C-R (2001) CD1-restrected NKT cells protect nonobese diabetic mice from developing diabetes. J Exp Med 194:313–320PubMedCrossRefGoogle Scholar
  26. 26.
    Falcone M, Facciotti F, Ghidoli N, Monti P, Olivieri S, Zaccagnino L, Bonifacio E, Casorati G, Sanvito F, Sarventrick N (2004) Up-regulation of CD1d expression restores the immunoregulatory function of NKT cells and prevents autoimmune diabetes in nonobese diabetic mice. J Immunol 172:5908–5916PubMedGoogle Scholar
  27. 27.
    Hammond KJL, Poulton LD, Almisano LJ, Silveira PA, Godrey DI, Bazter AG (1998) α/β-T cell receptor (TCR)+ CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med 187:1047–1056PubMedCrossRefGoogle Scholar
  28. 28.
    Lehuen A, Lantz O, Beaudoin L, Laloux V, Carnaud C, Bendelac A, Bach J-F, Monteriro RC (1998) Overexpression of natural killer T cells protects Vα14-Jα18 transgenic nonobese diabetic mice against diabetes. J Exp Med 188:1831–1839PubMedCrossRefGoogle Scholar
  29. 29.
    Hong S, Wilson MT, Serizawa I, Wu L, Singh N, Naidenko OV, Miura T, Haba T, Scherer DC, Wei J, Kronenberg M, Koezuka Y, Van Kaer L (2001) The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 7:1052–1056PubMedCrossRefGoogle Scholar
  30. 30.
    Sharif S, Arreaza GA, Zucker P, Mi Q-S, Sondhi J, Naidenko OV, Kronenberg M, Koezuka Y, Delovitch TL, Gombert J-M, Leite-de-Moraes M, Gouarin C, Zhu R, Hameg A, Nakayama T, Taniguchi M, Lepault F, Lehuen A, Bach J-F, Herbelin A (2001) Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune tye1 diabetes. Nat Med 7:1057–1062PubMedCrossRefGoogle Scholar
  31. 31.
    Mizuno M, Masumura M, Tomi C, Chiba A, Oki S, Yamamura T, Miyake S (1997) Synthetic glycolipid OCH prevents insulitis and diabetes in NOD mice. J Autoimmun 10:279–285CrossRefGoogle Scholar
  32. 32.
    Laloux V, Beaudoin L, Jeske D, Carnaud C, Lehuen A (2001) NKT cell-induced protection against diabetes in Vα14-Jα281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen. J Immunol 166:3749–3756PubMedGoogle Scholar
  33. 33.
    Beaudoin L, Laloux V, Novak J, Lucas B, Lehuen A (2002) NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity 17:725–736PubMedCrossRefGoogle Scholar
  34. 34.
    Novak J, Beaudoin L, Griseri T, Lehuen A (2005) Inhibition of T cells differentiation into effectors by NKT cells requires cell contacts. J Immunol 174:1954–1961PubMedGoogle Scholar
  35. 35.
    Chen YG, Choisy-Rossi CM, Holl TM, Champan HD, Besra GS, Porcelli SA, Shaffer DJ, Roopenian D, Wilson SB, Serreze DV (2005) Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes. J Immunol 174:1196–1204PubMedGoogle Scholar
  36. 36.
    Griseri T, Beaudoin L, Novak J, Mars LT, Lepault F, Liblau R, Lehuen A (2005) Invariant NKT cells exacerbate type 1 diabetes induced by CD8 T cells. J Immunol 175:2091–2101PubMedGoogle Scholar
  37. 37.
    Chiba A, Kaieda S, Oki S, Yamamura T, Miyake S (2005) The involvement of Vα14 natural killer T cells in the pathogenesis of murine models of arthritis. Arthritis Rheum 52:1941–1948PubMedCrossRefGoogle Scholar
  38. 38.
    Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237PubMedCrossRefGoogle Scholar
  39. 39.
    Chiba A, Oki S, Miyamoto K, Hashimoto H, Yamamura T, Miyake S (2004) Suppression of collagen-induced arthritis by natural killer activation with OCH, a sphingosine-truncated analog of α-galactosylceramide. Arthritis Rheum 50:305–313PubMedCrossRefGoogle Scholar
  40. 40.
    Ohnishi Y, Tsutsumi A, Goto D, Itoh S, Matsumoto I, Taniguchi M, Sumida T (2005) TCRVα14+ natural killer T cell function and effector T cells in mice with collagen-induced arthritis. Clin Exp Immunol 141:47–53PubMedCrossRefGoogle Scholar
  41. 41.
    Kim HY, Kim HJ, Min HS, Park ES, Park SH, Chung DH (2005) NKT cells promote antibody-induced arthritis by suppressing transforming growth β1 production. J Exp Med 201:41–47PubMedCrossRefGoogle Scholar
  42. 42.
    Korganow AS, Ji H, Mangialaio S, Dchatelle V, Pelanda R, Martin T, Degott C, Kikutani H, Rajewsky K, Pasquali JL, Benoist C, Mathis D (1999) From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10:451–461PubMedCrossRefGoogle Scholar
  43. 43.
    Terato K, Hasty KA, Reife RA, Cremer MA, Kang H, Stuart JM (1992) Induction of arthritis with monoclonal antibodies to collagen. J Immunol 148:2103–2108PubMedGoogle Scholar
  44. 44.
    Brandes ME, Allen JB, Ogawa Y, Wahl SM (1991) Transforming growth factor β1 suppresses acute and chronic arthritis in experimental animals. J Clin Invest 87:1108–1113PubMedCrossRefGoogle Scholar
  45. 45.
    Kuruvilla AP, Shah R, Hochwald GM, Liggitt HD, Palladino MA et al (1991) Protective effect of transforming growth factor β1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci U S A 88:2918–2921PubMedCrossRefGoogle Scholar
  46. 46.
    Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM et al (1992) Involvement of endogenous tumor necrosis factor alpha and transforming growth factor β during induction of collagen type II arthritis in mice. Proc Natl Acad Sci U S A 189:7375–7379CrossRefGoogle Scholar
  47. 47.
    Takeda K, Dennert G (1993) The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation B cell immunoglobulin secretion, and autoimmune symptoms. J Exp Med 177:155–164PubMedCrossRefGoogle Scholar
  48. 48.
    Mieza MA, Itoh T, Cui JQ, Makino Y, Kawano T, Tsuchida K, Koike AT, Shirai T, Yagita H, Matsuzawa A, Koseki H, Taniguchi M (1996) Selective reduction of Vα14+ NKT cells associated with disease development in autoimmune-prone mice. J Immunol 156:4035–4040PubMedGoogle Scholar
  49. 49.
    Yang J-Q, Saxena V, Xu H, Van Kaer L, Wang C-R, Singh RR (2003) Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis. J Immunol 171:4439–4446PubMedGoogle Scholar
  50. 50.
    Yang JQ, Singh AK, Wilson MT, Satoh M, Stanic AK, Par J-J, Hong S, Gadola SD, Mizutani A, Kakumanu SR, Reeves W, Cerundolo V, Joyce S, Van Kaer L, Singh RR (2003) Repeated α-galactosylceramide administration results in expansion of NKT cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J Immunol 171:2142–2153PubMedGoogle Scholar
  51. 51.
    Chan OTM, Paliwal V, Mcniff JM, Park SH, Bendelac A, Schlomchik MJ (2001) Deficiency in β2-microglobulin, but not CD1, accelerates spontaneous lupus skin disease while inhibiting nephritis in MRL-Faslpr mice: an example of disease regulation at the organ level. J Immunol 167:2985–2990PubMedGoogle Scholar
  52. 52.
    Yang JQ, Saxena V, Xu H, van Kaer L, Wang C-R, Singh RR (2003) Repeated α-galactosylceramide administration results in expansion of NKT cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J Immunol 171:4439–4446PubMedGoogle Scholar
  53. 53.
    Singh AK, Yang JQ, Parekh VV, Wei J, Wang CR, Joyce S, Singh RR, van Kaer L (2005) The natural killer T cell ligand α-galactosylceramide prevents or promotes pristine-induced lupus in mice. Eur J Immunol 35:1143–1154PubMedCrossRefGoogle Scholar
  54. 54.
    Morshe SRM, Mannoor K, Halder RC, Kawamura H, Bannai M, Sekikawa H, Watanabe H, Abo T (2002) Tissue-specific expansion of NTK and CD5+B cells at the onset of autoimmune disease in (NZB x NZW)F1 mice. Eur J Immunol 32:2551–2561CrossRefGoogle Scholar
  55. 55.
    Firestier C, Molano A, Im JS, Dutronc Y, Diamond B, Davidson A, Illarionov PA, Besra GS, Porcelli SA (2005) Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black x New Zealand White) F1 mice. J Immunol 175:763–770Google Scholar
  56. 56.
    Zeng D, Liu Y, Sidobre S, Kronenberh M, Strober S (2003) Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J Clin Invest 112:1211–1222PubMedCrossRefGoogle Scholar
  57. 57.
    Saubermann LJ, Beck P, Jong YPD, Pitman RS, Ryan MS, Kim HS, Exley M, Snapper S, Balk SP, Hagen SJ, Kanauchi O, Motoki K, Sakai T, Terhorst C, Koezuka Y, Podolsky DK, Blumerg RS (2000) Activation of natural killer T cells by α-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology 119:119–128PubMedCrossRefGoogle Scholar
  58. 58.
    Ueno Y, Tanaka S, Sumi M, Miyake S, Tazuma S, Taniguchi M, Yamamura T, Chyayama K (2005) Single dose of OCH improves mucosal T helper type 1/T helper type 2 cytokine balance and prevents experimental colitis in the presence of Vα14 natural killer T cells in mice. Inflamm Bowel Dis 11:35–41PubMedCrossRefGoogle Scholar
  59. 59.
    Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W (2002) Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17:629–638PubMedCrossRefGoogle Scholar
  60. 60.
    Sumida T, Sakamoto A, Murata H, Makino Y, Takahashi H, Yoshida S, Nishioka K, Iwamoto I, Taniguchi M (1995) Selective reduction of T cells bearing invariant Vαa24 JαQ antigen receptor in patients with systemic sclerosis. J Exp Med 182:1163–1168PubMedCrossRefGoogle Scholar
  61. 61.
    Wilson SB, Kent SC, Patton KT, Orban T, Jackson RA, Exley M, Porcelli S, Schatz DA, Atkinson MA, Balk SP, Strominger JL, Hafler DA (1998) Extreme Th1 bias of invariant Vα24 JαQT cells in type 1 diabetes. Nature 391:177–181PubMedCrossRefGoogle Scholar
  62. 62.
    Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B, Porcelli S, Maclaren N (2002) Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109:131–140PubMedCrossRefGoogle Scholar
  63. 63.
    Illes Z, Kondo T, Newcombe J, Oka N, Tabira T, Yamamura T (2000) Differential expression of NKT cell Vα24JαQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J Immunol 164:4375–4381PubMedGoogle Scholar
  64. 64.
    Araki M, Kondo T, Gumperz JE, Brenner MB, Miyake S, Yamamura T (2003) Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int Immunol 15:279–288PubMedCrossRefGoogle Scholar
  65. 65.
    Demoulins T, Gachelin G, Bequet D, Dormont D (2003) A biased Vα24+ T-cell repertoire leads to circulating NKT-cell defects in a multiple sclerosis patient at the onset of his disease. Immunol Lett 90:223–228PubMedCrossRefGoogle Scholar
  66. 66.
    Oishi Y, Sumida T, Sakamoto A, Kita Y, Kurasawa K, Nawata Y, Takabayashi K, Takahashi H, Yoshida S, Taniguchi M, Saito Y, Iwamoto I (2001) Selective reduction and recovery of invariant Vα24JαQT cell receptor T cells in correlation with disease activity in patients with systemic lupus erythematosus. J Rheumatol 28:275–283PubMedGoogle Scholar
  67. 67.
    Kojo S, Adachi Y, Keino H, Taniguchi M, Sumida T (2001) Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum 44:1127–1138PubMedCrossRefGoogle Scholar
  68. 68.
    Van der Vliet HJ, von Blomberg BM, Nishi N, Reijm M, Voskuyl AE, van Bodegraven AA, Polman CH, Rustemeyer T, Lips P, van den Eertwegh AJ, Giaccone G, Scheper RJ, Pinedo HM (2001) Circulating Vα24+ Vβ11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin Immunol 100:144–148PubMedCrossRefGoogle Scholar
  69. 69.
    Lee PT, Putnam A, Benlagha K, Teyton L, Gottlieb PA, Bendelac A (2002) Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 110:793–800PubMedCrossRefGoogle Scholar
  70. 70.
    Oikawa Y, Shimada A, Yamada S, Motohashi Y, Nakagawa Y, Irie J, Maruyama T, Saruta T (2002) High frequency of Vα24+ Vβ11+ T-cells observed in type 1 diabetes. Diabetes Care 25:1818–1823PubMedCrossRefGoogle Scholar
  71. 71.
    Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625–636PubMedCrossRefGoogle Scholar
  72. 72.
    Lee PT, Benlagha K, Teyton L, Bendelac A (2002) Distinct functional lineages of human Vα24 natural killer T cells. J Exp Med 195:637–641PubMedCrossRefGoogle Scholar
  73. 73.
    Kent SC, Chen Y, Clemmings SM, Viglietta V, Kenyon NS, Ricordi C, Hering B, Hafler DA (2005) Loss of IL-4 secretion from human type 1a diabetic pancreatic draining lymph node NKT cells. J Immunol 175:4458–4464PubMedGoogle Scholar
  74. 74.
    Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T, Teneberg S, Wang D, Proia RL, Levery SB, Savage PB, Teyton L, Bendelac A (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789PubMedCrossRefGoogle Scholar
  75. 75.
    Kaleda S, Tom C, Oki S, Yamamura T, Miyake S (2007) Activation of iNKT cells by synthetic glycolipid ligands supresses autoantibody-induced arthritis. Arthritis Rheum (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • S. Miyake
    • 1
  • T. Yamamura
    • 1
  1. 1.Department of Immunology, National Institute of NeuroscienceNCNPKodaira, TokyoJapan

Personalised recommendations