Evolutionary Biology of CD1

  • C. C. Dascher
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 314)


Major Histocompatibility Complex Genome Duplication Human Major Histocompatibility Complex Major Histocompatibility Complex Locus Jawless Vertebrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The MHC sequencing consortium (1999) Complete sequence and gene map of a human major histocompatibility complex. Nature 401:921–923CrossRefGoogle Scholar
  2. 2.
    Abi-Rached L, Gilles A, Shiina T, Pontarotti P, Inoko H (2002) Evidence of en bloc duplication in vertebrate genomes. Nat Genet 31:100–105PubMedCrossRefGoogle Scholar
  3. 3.
    Ahlberg PE, Clack JA (2006) Palaeontology: a firm step from water to land. Nature 440:747–749PubMedCrossRefGoogle Scholar
  4. 4.
    Albertson DG, Fishpool R, Sherrington P, Nacheva E, Milstein C (1988) Sensitive and high resolution in situ hybridization to human chromosomes using biotin labelled probes: assignment of the human thymocyte CD1 antigen genes to chromosome 1. EMBO J 7:2801–2805PubMedGoogle Scholar
  5. 5.
    Bartl S, Baish MA, Flajnik MF, Ohta Y (1997) Identification of class I genes in cartilaginous fish, the most ancient group of vertebrates displaying an adaptive immune response. J Immunol 159:6097–6104PubMedGoogle Scholar
  6. 6.
    Beck S, Trowsdale J (2000) The human major histocompatability complex: lessons from the DNA sequence. Annu Rev Genomics Hum Genet 1:117–137PubMedCrossRefGoogle Scholar
  7. 7.
    Benton MJ (1997) Vertebrate palaeontology, 2nd edn. Chapman & Hall, New YorkGoogle Scholar
  8. 8.
    Blomme T, Vandepoele K, De Bodt S, Simillion C, Maere S, Van de Peer Y (2006) The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 7:R43PubMedCrossRefGoogle Scholar
  9. 9.
    Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447PubMedCrossRefGoogle Scholar
  10. 10.
    Calabi F, Jarvis JM, Martin L, Milstein C (1989) Two classes of CD1 genes. Eur J Immunol 19:285–292PubMedCrossRefGoogle Scholar
  11. 11.
    Calabi F, Milstein C (2000) The molecular biology of CD1. Semin Immunol 12:503–509PubMedCrossRefGoogle Scholar
  12. 12.
    Castro LF, Furlong RF, Holland PW (2004) An antecedent of the MHC-linked genomic region in amphioxus. Immunogenetics 55:782–784PubMedCrossRefGoogle Scholar
  13. 13.
    Daeschler EB, Shubin NH, Jenkins FA Jr (2006) A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440:757–763PubMedCrossRefGoogle Scholar
  14. 14.
    Danchin E, Vitiello V, Vienne A, Richard O, Gouret P, McDermott MF, Pontarotti P (2004) The major histocompatibility complex origin. Immunol Rev 198:216–232PubMedCrossRefGoogle Scholar
  15. 15.
    Danchin EG, Pontarotti P (2004) Towards the reconstruction of the bilaterian ancestral pre-MHC region. Trends Genet 20:587–591PubMedCrossRefGoogle Scholar
  16. 16.
    Dascher CC, Hiromatsu K, Xiong X, Sugita M, Buhlmann JE, Dodge IL, Lee SY, Roura-Mir C, Watts GF, Roy CJ, Behar SM, Clemens DL, Porcelli SA, Brenner MB (2002) Conservation of CD1 intracellular trafficking patterns between mammalian species. J Immunol 169:6951–6958PubMedGoogle Scholar
  17. 17.
    Dascher CC, Brenner MB (2003) Evolutionary constraints on CD1 structure: insights from comaprative genomic analysis. Trends Imm 24:412–418CrossRefGoogle Scholar
  18. 18.
    Dascher CC, Brenner MB (2003) CD1 Antigen presentation and infectious disease. In: Herwald H (ed) Host response mechanisms in infectious disease. Basel Contributions to Microbiology, vol 10. Karger, pp 164–182Google Scholar
  19. 19.
    Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314PubMedCrossRefGoogle Scholar
  20. 20.
    Durand D, Hoberman R (2006) Diagnosing duplications — can it be done? Trends Genet 22:156–164PubMedCrossRefGoogle Scholar
  21. 21.
    Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15:351–162PubMedCrossRefGoogle Scholar
  22. 22.
    Force A, Amores A, Postlethwait JH (2002) Hox cluster organization in the jawless vertebrate Petromyzon marinus. J Exp Zool 294:30–46PubMedCrossRefGoogle Scholar
  23. 23.
    Gu X, Wang Y, Gu J (2002) Age distribution of human gene families shows significant roles of both large-and small-scale duplications in vertebrate evolution. Nat Genet 31:205–259PubMedCrossRefGoogle Scholar
  24. 24.
    Hokamp K, McLysaght A, Wolfe KH (2003) The 2R hypothesis and the human genome sequence. J Struct Funct Genomics 3:95–110PubMedCrossRefGoogle Scholar
  25. 25.
    Holland LZ, Laudet V, Schubert M (2004) The chordate amphioxus: an emerging model organism for developmental biology. Cell Mol Life Sci 61:2290–2308PubMedCrossRefGoogle Scholar
  26. 26.
    Hughes AL (1991) Evolutionary origin and diversification of the mammalian CD1 antigen genes. Mol Biol Evol 8:185–201PubMedGoogle Scholar
  27. 27.
    Hughes AL, Nei M (1993) Evolutionary relationships of the classes of major histocompatibility complex genes. Immunogenetics 37:337–346PubMedCrossRefGoogle Scholar
  28. 28.
    Hughes AL, da Silva J, Friedman R (2001) Ancient genome duplications did not structure the human Hox-bearing chromosomes. Genome Res 11:771–780PubMedCrossRefGoogle Scholar
  29. 29.
    Hughes AL, Friedman R (2003) 2R or not 2R: testing hypotheses of genome duplication in early vertebrates. J Struct Funct Genomics 3:85–93PubMedCrossRefGoogle Scholar
  30. 30.
    Ji Q, Luo ZX, Yuan CX, Wible JR, Zhang JP, Georgi JA (2002) The earliest known eutherian mammal. Nature 416:816–822PubMedCrossRefGoogle Scholar
  31. 31.
    Kasahara M, Vazquez M, Sato K, McKinney EC, Flajnik MF (1992) Evolution of the major histocompatibility complex: isolation of class II A cDNA clones from the cartilaginous fish. Proc Natl Acad Sci U S A 89:6688–6692PubMedCrossRefGoogle Scholar
  32. 32.
    Kasahara M, Hayashi M, Tanaka K, Inoko H, Sugaya K, Ikemura T, Ishibashi T (1996) Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proc Natl Acad Sci U S A 93:9096–9101PubMedCrossRefGoogle Scholar
  33. 33.
    Kasahara M, Kandil E, Salter-Cid L, Flajnik MF (1996) Origin and evolution of the class I gene family: why are some of the mammalian class I genes encoded outside the major histocompatibility complex? Res Immunol 147:278–284; discussion 284–285PubMedCrossRefGoogle Scholar
  34. 34.
    Kasahara M, Nakaya J, Satta Y, Takahata N (1997) Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet 13:90–92PubMedCrossRefGoogle Scholar
  35. 35.
    Katsanis N, Fitzgibbon J, Fisher EM (1996) Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35:101–108PubMedCrossRefGoogle Scholar
  36. 36.
    Kaufman J, Milne S, Gobel TW, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925PubMedCrossRefGoogle Scholar
  37. 37.
    Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629PubMedCrossRefGoogle Scholar
  38. 38.
    Klein J, O’HUigin C (1993) Composite origin of major histocompatibility complex genes. Curr Opin Genet Dev 3:923–930PubMedCrossRefGoogle Scholar
  39. 39.
    Kruiswijk CP, Hermsen TT, Westphal AH, Savelkoul HF, Stet RJ (2002) A novel functional class I lineage in zebrafish (Danio rerio), carp (Cyprinus carpio), and large barbus (Barbus intermedius) showing an unusual conservation of the peptide binding domains. J Immunol 169:1936–1947PubMedGoogle Scholar
  40. 40.
    Kumanovics A, Takada T, Lindahl KF (2003) Genomic organization of the mammalian MHC. Annu Rev Immunol 21:629–657PubMedCrossRefGoogle Scholar
  41. 41.
    Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920PubMedCrossRefGoogle Scholar
  42. 42.
    Lee MS (1999) Molecular clock calibrations and metazoan divergence dates. J Mol Evol 49:385–391PubMedCrossRefGoogle Scholar
  43. 43.
    Litman GW, Cannon JP, Dishaw LJ (2005) Reconstructing immune phylogeny: new perspectives. Nat Rev Immunol 5:866–879PubMedCrossRefGoogle Scholar
  44. 44.
    Lundin LG (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1–19PubMedCrossRefGoogle Scholar
  45. 45.
    Manolova V, Kistowska M, Paoletti S, Baltariu GM, Bausinger H, Hanau D, Mori L, De Libero G (2006) Functional CD1a is stabilized by exogenous lipids. Eur J Immunol 36:1083–1092PubMedCrossRefGoogle Scholar
  46. 46.
    Martin AP, Naylor GJ, Palumbi SR (1992) Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357:153–155PubMedCrossRefGoogle Scholar
  47. 47.
    Martin LH, Calabi F, Milstein C (1986) Isolation of CD1 genes: a family of major histocompatibility complex-related differentiation antigens. Proc Natl Acad Sci U S A 83:9154–9158PubMedCrossRefGoogle Scholar
  48. 48.
    Maruoka T, Tanabe H, Chiba M, Kasahara M (2005) Chicken CD1 genes are located in the MHC: CD1 and endothelial protein C receptor genes constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals. Immunogenetics 57:590–600PubMedCrossRefGoogle Scholar
  49. 49.
    Mayer WE, Uinuk-Ool T, Tichy H, Gartland LA, Klein J, Cooper MD (2002) Isolation and characterization of lymphocyte-like cells from a lamprey. Proc Natl Acad Sci U S A 99:14350–14355PubMedCrossRefGoogle Scholar
  50. 50.
    McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31:200–204PubMedCrossRefGoogle Scholar
  51. 51.
    Miller MM, Wang C, Parisini E, Coletta RD, Goto RM, Lee SY, Barral DC, Townes M, Roura-Mir C, Ford HL, Brenner MB, Dascher CC (2005) Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc Natl Acad Sci U S A 102:8674–8679PubMedCrossRefGoogle Scholar
  52. 52.
    Moody DB, Briken V, Cheng TY, Roura-Mir C, Guy MR, Geho DH, Tykocinski ML, Besra GS, Porcelli SA (2002) Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat Immunol 3:435–442PubMedGoogle Scholar
  53. 53.
    Moody DB, Porcelli SA (2003) Intracellular pathways of CD1 antigen presentation. Nat Rev Immunol 3:11–22PubMedCrossRefGoogle Scholar
  54. 54.
    Morita M, Motoki K, Akimoto K, Natori T, Sakai T, Sawa E, Yamaji K, Koezuka Y, Kobayashi E, Fukushima H (1995) Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J Med Chem 38:2176–2187PubMedCrossRefGoogle Scholar
  55. 55.
    Mukherjee S, Soe TT, Maxfield FR (1999) Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J Cell Biol 144:1271–1284PubMedCrossRefGoogle Scholar
  56. 56.
    Novacek MJ (1997) Mammalian evolution: an early record bristling with evidence. Curr Biol 7: R489–R491PubMedCrossRefGoogle Scholar
  57. 57.
    Ohno S (1970) Evolution by genome duplication. Springer-Verlag, New York Berlin HeidelbergGoogle Scholar
  58. 58.
    Ohta Y, Okamura K, McKinney EC, Bartl S, Hashimoto K, Flajnik MF (2000) Primitive synteny of vertebrate major histocompatibility complex class I and class II genes. Proc Natl Acad Sci U S A 97:4712–4717PubMedCrossRefGoogle Scholar
  59. 59.
    Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF (2006) Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol 176:3674–3685PubMedGoogle Scholar
  60. 60.
    Okamura K, Ototake M, Nakanishi T, Kurosawa Y, Hashimoto K (1997) The most primitive vertebrates with jaws possess highly polymorphic MHC class I genes comparable to those of humans. Immunity 7:777–790PubMedCrossRefGoogle Scholar
  61. 61.
    Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL, Cooper MD (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–180PubMedCrossRefGoogle Scholar
  62. 62.
    Pancer Z, Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24:497–518PubMedCrossRefGoogle Scholar
  63. 63.
    Panopoulou G, Hennig S, Groth D, Krause A, Poustka AJ, Herwig R, Vingron M, Lehrach H (2003) New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13:1056–1066PubMedCrossRefGoogle Scholar
  64. 64.
    Panopoulou G, Poustka AJ (2005) Timing and mechanism of ancient vertebrate genome duplications — the adventure of a hypothesis. Trends Genet 21:559–567PubMedCrossRefGoogle Scholar
  65. 65.
    Rast JP, Anderson MK, Strong SJ, Luer C, Litman RT, Litman GW (1997) alpha, beta, gamma, and delta T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity 6:1–11PubMedCrossRefGoogle Scholar
  66. 66.
    Salomonsen J, Sorensen MR, Marston DA, Rogers SL, Collen T, van Hateren A, Smith AL, Beal RK, Skjodt K, Kaufman J (2005) Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc Natl Acad Sci U S A 102:8668–8673PubMedCrossRefGoogle Scholar
  67. 67.
    Sambrook JG, Figueroa F, Beck S (2005) A genome-wide survey of major histocompatibility complex (MHC) genes and their paralogues in zebrafish. BMC Genomics 6:152PubMedCrossRefGoogle Scholar
  68. 68.
    Sato A, Figueroa F, Murray BW, Malaga-Trillo E, Zaleska-Rutczynska Z, Sultmann H, Toyosawa S, Wedekind C, Steck N, Klein J (2000) Nonlinkage of major histocompatibility complex class I and class II loci in bony fishes. Immunogenetics 51:108–116PubMedCrossRefGoogle Scholar
  69. 69.
    Sereno PC (1999) The evolution of dinosaurs. Science 284:2137–2147PubMedCrossRefGoogle Scholar
  70. 70.
    Shum BP, Rajalingam R, Magor KE, Azumi K, Carr WH, Dixon B, Stet RJ, Adkison MA, Hedrick RP, Parham P (1999) A divergent non-classical class I gene conserved in salmonids. Immunogenetics 49:479–490PubMedCrossRefGoogle Scholar
  71. 71.
    Spring J (1997) Vertebrate evolution by interspecific hybridisation — are we polyploid? FEBS Lett 400:2–8PubMedCrossRefGoogle Scholar
  72. 72.
    Spring J (2002) Genome duplication strikes back. Nat Genet 31:128–129PubMedGoogle Scholar
  73. 73.
    Sugita M, Grant EP, van Donselaar E, Hsu VW, Rogers RA, Peters PJ, Brenner MB (1999) Separate pathways for antigen presentation by CD1 molecules. Immunity 11:743–752PubMedCrossRefGoogle Scholar
  74. 74.
    Sugita M, Peters PJ, Brenner MB (2000) Pathways for lipid antigen presentation by CD1 molecules: nowhere for intracellular pathogens to hide. Traffic 1:295–300PubMedCrossRefGoogle Scholar
  75. 75.
    Suzuki T, Shin IT, Kohara Y, Kasahara M (2004) Transcriptome analysis of hagfish leukocytes: a framework for understanding the immune system of jawless fishes. Dev Comp Immunol 28:993–1003PubMedCrossRefGoogle Scholar
  76. 76.
    Van den Elzen P, Garg S, Leon L, Brigl M, Leadbetter EA, Gumperz JE, Dascher CC, Cheng TY, Sacks FM, Illarionov PA, Besra GS, Kent SC, Moody DB, Brenner MB (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437:906–910PubMedCrossRefGoogle Scholar
  77. 77.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRefGoogle Scholar
  78. 78.
    Wang C, Perera TV, Ford HL, Dascher CC (2003) Characterization of a divergent non-classical MHC class I gene in sharks. Immunogenetics 55:57–61PubMedCrossRefGoogle Scholar
  79. 79.
    Wang Y, Gu X (2000) Evolutionary patterns of gene families generated in the early stage of vertebrates. J Mol Evol 51:88–96PubMedGoogle Scholar
  80. 80.
    Wessler SR, Carrington JC (2005) The consequences of gene and genome duplication in plants. Curr Opin Plant Biol 8:119–121PubMedCrossRefGoogle Scholar
  81. 81.
    Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713PubMedCrossRefGoogle Scholar
  82. 82.
    Zhou D, Cantu C 3rd, Sagiv Y, Schrantz N, Kulkarni AB, Qi X, Mahuran DJ, Morales CR, Grabowski GA, Benlagha K, Savage P, Bendelac A, Teyton L (2004) Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303:523–527PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • C. C. Dascher
    • 1
  1. 1.Center for ImmunobiologyMount Sinai School of MedicineNew YorkUSA

Personalised recommendations