Advertisement

Subquadratic Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation

  • M. Anwar Hasan
  • Christophe Negre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5130)

Abstract

We study Dickson bases for binary field representation. Such a representation seems interesting when no optimal normal basis exists for the field. We express the product of two elements as Toeplitz or Hankel matrix vector product. This provides a parallel multiplier which is subquadratic in space and logarithmic in time.

Keywords

Toeplitz Matrix Irreducible Polynomial Toeplitz Matrice Hankel Matrix Matrix Vector Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansari, B., Anwar Hasan, M.: Revisiting finite field multiplication using dickson bases. Technical report, University of Waterloo, Ontario, Canada (2007)Google Scholar
  2. 2.
    Dickson, L.E.: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Ann. of Math. 11, 161–183 (1883)CrossRefGoogle Scholar
  3. 3.
    Fan, H., Hasan, M.A.: A new approach to sub-quadratic space complexity parallel multipliers for extended binary fields. IEEE Trans. Computers 56(2), 224–233 (2007)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Fan, H., Hasan, M.A.: Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases. In: IEEE Trans. Computers (2008)Google Scholar
  5. 5.
    Giorgi, P., Negre, C., Plantard, T.: Subquadratic binary field multiplier in double polynomial system. In: SECRYPT 2007, Barcelona, Spain (2007)Google Scholar
  6. 6.
    Lild, R., Mullen, G.L., Turnwald, G.: Dickson Polynomials. Pitman Monograpah and Survey n Pure and Applied Mathematic, vol. 65 (1993)Google Scholar
  7. 7.
    Mullin, R.C., Mahalanobis, A.: Dickson bases and finite fields. Technical report, Universite of Waterloo, Ontario (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Anwar Hasan
    • 1
  • Christophe Negre
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooCanada
  2. 2.Team DALI/ELIAUSUniversity of PerpignanFrance

Personalised recommendations