Advertisement

Modular Reduction in GF(2n) without Pre-computational Phase

  • M. Knežević
  • K. Sakiyama
  • J. Fan
  • I. Verbauwhede
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5130)

Abstract

In this study we show how modular multiplication with Barrett and Montgomery reductions over certain finite fields of characteristic 2 can be implemented efficiently without using a pre-computational phase. We extend the set of moduli that is recommended by Standards for Efficient Cryptography (SEC) by defining two distinct sets for which either Barrett or Montgomery reduction is applicable. As the proposed algorithm is very suitable for a fast modular multiplication, we propose an architecture for the fast modular multiplier that can efficiently be used without pre-computing the inverse of the modulus.

Keywords

Modular multiplication Barrett reduction Montgomery reduction elliptic curve cryptography public-key cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrett, P.: Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)Google Scholar
  2. 2.
    Koç, Ç.K., Acar, T.: Montgomery multiplication in GF(2k). Designs, Codes and Cryptography 14, 57–69 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dhem, J.-F.: Efficient modular reduction algorithm in \(\mathbb{f}_q[x]\) and its application to left to right modular multiplication in \(\mathbb{f}_2[x]\). In: Proceedings of 5th International Workshop on Cryptographic Hardware and Embedded Systems (CHES). LNCS, pp. 203–213. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  6. 6.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Koblitz, N.: Elliptic curve cryptosystem. Math. Comp. 48, 203–209 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Miller, V.: Uses of elliptic curves in cryptography. In: Williams, H.C. (ed.) Advances in Cryptology: Proceedings of CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  9. 9.
    Montgomery, P.: Modular multiplication without trial division. Mathematics of Computation 44(170), 519–521 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Shen, H., Jin, Y., You, R.: Unbalanced Exponent Modular Reduction over Binary Field and Its Implementation. In: Proceedings of the First International Conference on Innovative Computing, Information and Control, pp. 190–193 (2006)Google Scholar
  12. 12.
    Standards for Efficient Cryptography. Elliptic Curve Cryptography, Version 1.5, draft (2005), http://www.secg.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Knežević
    • 1
  • K. Sakiyama
    • 1
    • 2
  • J. Fan
    • 1
  • I. Verbauwhede
    • 1
  1. 1.Department Electrical Engineering - ESAT/SCD-COSIC and IBBTKatholieke Universiteit LeuvenLeuven-HeverleeBelgium
  2. 2.Dept. of Information and Communication Eng.University of Electro-CommunicationsTokyoJapan

Personalised recommendations