Transitive q-Ary Functions over Finite Fields or Finite Sets: Counts, Properties and Applications

  • Marc Mouffron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5130)


To implement efficiently and securely good non-linear functions with a very large number of input variables is a challenge. Partially symmetric functions such as transitive functions are investigated to solve this issue. Known results on Boolean symmetric functions are extended both to transitive functions and to q-ary functions (on any set of q elements including finite fields GF(q) for any q). In a special case when the number of variables is n = p k with p prime, an extension of Lucas’ theorem provides new counting results and gives useful properties on the set of transitive functions. Results on balanced transitive q-ary functions are given. Implementation solutions are suggested based on q-ary multiple-valued decision diagrams and examples show simple implementations for these kind of symmetric functions. Applications include ciphers design and hash functions design but also search for improved covering radius of codes.


Symmetric functions (sharply) t-transitive functions balanced functions functions over finite fields hardware and software implementation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, G.E.: The theory of partitions, Encyclopedia of mathematics and its applications, vol. 2. Addison-Wesley Publishing Company, Reading (1976)Google Scholar
  2. 2.
    Ars, G., Faugere, J.-C.: Algebraic Immunities of functions over finite fields, INRIA Rapport de recherche N° 5532 (March 2005)Google Scholar
  3. 3.
    Berbain, C., Billet, O., Canteaut, A., Courtois, N., Debraize, B., Gilbert, H., Goubin, L., Gouget, A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T., Sibert, H.: DECIM-128,
  4. 4.
    Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers C35(8), 677–691 (1986)CrossRefGoogle Scholar
  5. 5.
    Butler, J.T., Herscovici, D.S., Sasao, T., Barton, R.J.: Average and Worst Case Number of Nodes in Decision Diagrams of Symmetric Multiple-Valued Functions. IEEE Transactions on computers 46(4) (April 1997)Google Scholar
  6. 6.
    Cameron Peter, J.: Permutation Groups. Cambridge Univ. Press, Cambridge (1999)zbMATHGoogle Scholar
  7. 7.
    Camion, P., Canteaut, A.: Generalization of Siegenthaler inequality and Schnorr-Vaudenay multipermutations. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 372–386. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Canteaut, A., Videau, M.: Symmetric Boolean Functions. IEEE Transactions on information theory 51(8), 2791–2811 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Chen, H., Li, J.: Lower Bounds on the Algebraic Immunity of Boolean Functions,
  10. 10.
    Cusick, T., Li, Y., Stanica, P.: Balanced Symmetric Functions over GF(p). IEEE Transactions on information theory 54(3), 1304–1307 (2008)CrossRefGoogle Scholar
  11. 11.
    Dixon, J.D., Brian, M.: Permutation Groups. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  12. 12.
    Heinrich-Litan, L., Molitor, P.: Least Upper Bounds for the Size of OBDDs Using Symmetry Properties. IEEE Transactions on computers 49(4), 271–281 (2000)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Knuth, D.: The art of Computer Programming. Sorting and Searching, vol. 3, pp. 506–542 (1973)Google Scholar
  14. 14.
    Lobanov, M.: Tight bound between nonlinearity and algebraic immunity, Cryptology ePrint Archive, Report 2005/441 (2005),
  15. 15.
    Maitra, S., Sarkar, S., Dalai, D.K.: On Dihedral Group Invariant Boolean Functions. In: Workshop on Boolean Functions Cryptography and Applications, 2007 (BFCA 2007), Paris, France, May 2-3 (2007)Google Scholar
  16. 16.
    Mitchell, C.: Enumerating Boolean functions of cryptographic significance. Journal of cryptology 2(3), 155–170 (1990)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Pieprzyk, J., Qu, C.X.: Fast Hashing and Rotation-Symmetric Functions. Journal of Universal Computer Science 5(1), 20–31 (1999)MathSciNetGoogle Scholar
  19. 19.
    Qu, C.X., Seberry, J., Pieprzyk, J.: Relationships between Boolean Functions and symmetry group. In: International Computer Symposium 2000, ISC 2000, pp. 1–7 (2000)Google Scholar
  20. 20.
    Rivest, R., Vuillemin, J.: On recognizing graph properties from adjacency matrices. Theoretical Computer Science 3, 371–384 (1976)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Sarkar, P., Maitra, S.: Balancedness and Correlation Immunity of Symmetric Boolean Functions. In: Proc. R.C. Bose Centenary Symposium. Electronic Notes in Discrete Mathematics, vol. 15, pp. 178–183 (2003)Google Scholar
  22. 22.
    Stanica, P., Maitra, S.: Rotation symmetric Boolean Functions: Count and cryptographic properties. In: Proceedings of R.C. Bose Centenary Symposium on Discrete Mathematics and Applications. Indian Statistical Institute, Calcutta (December 2002)Google Scholar
  23. 23.
    Von Zur Gathen, J., Roche, J.R.: Polynomials with two values. Combinatorica 17(3), 345–362 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Yuan, L.: Results on rotation symmetric polynomials over GF(p). Information Sciences 178, 280–286 (2008)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marc Mouffron
    • 1
  1. 1.EADS Secure NetworksFrance

Personalised recommendations