Finite Dedekind Sums

  • Yoshinori Hamahata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5130)


In this paper, we introduce Dedekind sums associated to lattices defined over finite fields. We establish the reciprocity law for them.


Dedekind sums lattices Drinfeld modules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  2. 2.
    Gekeler, E.-U.: Finite modular forms. Finite Fields and Their Applications 7, 553–572 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Goss, D.: The algebraist’s upper half-planes. Bull. Amer. Math. Soc. 2, 391–415 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Goss, D.: Basic Structures of Function Fields. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Hamahata, Y.: Dedekind sums for finite fields. In: Diophantine Analysis and Related Fields: DARF 2007/2008. AIP Conference Proceedings, vol. 976, pp. 96–102 (2008)Google Scholar
  6. 6.
    Okada, S.: Analogies of Dedekind sums in function fields. Mem. Gifu Teach. Coll. 24, 11–16 (1989), Google Scholar
  7. 7.
    Rademacher, H., Grosswald, E.: Dedekind Sums, The Mathematical Association of America, Washington (1972)Google Scholar
  8. 8.
    Sczech, R.: Dedekindsummen mit elliptischen Funktionen. Invent. Math. 76, 523–551 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Serre, J.-P.: Cours d’arithmétique, Presses Universitaires de France, Paris (1970)Google Scholar
  10. 10.
    Zagier, D.: Higher-dimensional Dedekind sums. Math. Ann. 202, 149–172 (1973)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yoshinori Hamahata
    • 1
  1. 1.Department of MathematicsTokyo University of ScienceJapan

Personalised recommendations