Advertisement

EA and CCZ Equivalence of Functions over GF(2n)

  • K. J. Horadam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5130)

Abstract

EA-equivalence classes and the more general CCZ-equiva- lence classes of functions over GF(2 n ) each preserve APN and AB properties desirable for S-box functions. We show that they can be related to subsets c[T] and g[T] of equivalence classes [T] of transversals, respectively, thus clarifying their relationship and providing a new approach to their study. We derive a formula which characterises when two CCZ-equivalent functions are EA-inequivalent.

Keywords

CCZ-equivalence EA-equivalence bundle APN function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brinkmann, M., Leander, G.: On the classification of APN functions up to dimension 5. In: Augot, D., Sendrier, N., Tillich, J.-P. (eds.) Proc. International Workshop on Coding and Cryptography, Versailles, France, pp. 39–58 (2007)Google Scholar
  2. 2.
    Budaghyan, L.: The simplest method for constructing APN polynomials EA-inequivalent to power functions. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 177–188. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect nonlinear polynomials. IEEE Trans. Inform. Theory 52, 1141–1152 (2006)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Carlet, C., Ding, C.: Highly nonlinear mappings. J. Complexity 20, 205–244 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Horadam, K.J.: A theory of highly nonlinear functions. In: Fossorier, M., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 87–100. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Horadam, K.J.: Hadamard Matrices and Their Applications. Princeton University Press, Princeton (2007)zbMATHGoogle Scholar
  8. 8.
    Horadam, K.J.: Transversals, graphs and bundles of functions, in preparation.Google Scholar
  9. 9.
    Horadam, K.J., Farmer, D.G.: Bundles, presemifields and nonlinear functions, extended abstract. In: Augot, D., Sendrier, N., Tillich, J.-P. (eds.) Proc. International Workshop on Coding and Cryptography, Versailles, France, pp. 197–206 (2007)Google Scholar
  10. 10.
    Horadam, K.J., Farmer, D.G.: Bundles, presemifields and nonlinear functions. Des., Codes Cryptogr. ( to appear, 2008), doi:10.1007/s10623-008-9172-zGoogle Scholar
  11. 11.
    Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Pott, A.: A survey on relative difference sets. In: Groups, Difference Sets and the Monster, pp. 195–232. de Gruyter, New York (1996)Google Scholar
  13. 13.
    Pott, A.: Nonlinear functions in abelian groups and relative difference sets. Discr. Appl. Math. 138, 177–193 (2004)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • K. J. Horadam
    • 1
  1. 1.RMIT UniversityMelbourneAustralia

Personalised recommendations