Skip to main content

Master of the Obscure—Automated Geostatistical Classification in Presence of Complex Geophysical Processes

  • Chapter
Progress in Geomathematics

Abstract

The topic of this paper is the retrieval of hidden or secondary information on complex spatial variables from geophysical data. Typical situations of obscured geological or geophysical information are the following: (1) Noise may disturb the signal for a variable for which measurements have been collected. (2) The variable of interest may be obscured by other geophysical processes. (3) The information of interest may formally be captured in a secondary variable, whereas data may have been collected for a primary variable only, that is related to the geophysical process of interest. Examples discussed here include mapping of marine-geologic provinces from bathymetric data, identification of sea-ice properties from snow-depth data, analysis of snow surface data in an Alpine environment and association of deformation types in fast-moving glaciers from airborne video material or satellite imagery. Data types include geophysical profile or trackline data, image data, grid or matrix-type data, and more generally, any two-dimensional or three-dimensional discrete or discretizable data sets.

The framework for a solution is geostatistical characterization and classification, which typically involves the following steps: (1) calculation of vario functions (which may be of higher order or residual type or combinations of both), (2) derivation of classification parameters from vario functions, and (3) characterization, classification or segmentation, depending on the applied problem. In some situations, spatial surface roughness is utilized as an auxiliary variable, for instance, roughness of the seafloor may be derived from bathymetric data and be indicative of geological provinces.

The objective of this paper is to present components of the geostatistical classification method in a summarizing and synoptical manner, motivated by applied examples and integrating principal and generalized concepts, such as hyperparameters and parameters that relate to the same physical processes and work for data in oversampled and undersampled situations, parameters that facilitate comparison among different data types, data sets and across scales, variograms and vario functions of higher order, and deterministic and connectionist classification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agterberg FP (1974) Geomathematics: mathematical background and geo-science applications. Elsevier, Amsterdam, p 596

    Google Scholar 

  • Atkinson PM, Lewis P (2000) Geostatistical classification for remote sensing: an introduction. Comput Geosci 26 (4): 361–371

    Article  Google Scholar 

  • Armstrong M (1984) Problems with universal kriging. Math Geol 16 (1): 101–108

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists. Computer methods in the geosciences. Pergamon, Oxford, p 398

    Google Scholar 

  • Bennike O, Mikkelsen N, Klinge Pedersen H, Weidick A (eds) (2004) Ilulissat Icefjord. Geological Survey of Denmark and Greenland (GEUS), Copenhagen, p 116

    Google Scholar 

  • Burger H (1981) Untersuchungen zur Klassifizierung von Gesteinsoberflächen auf Landsat-Auf\-nah\-men mit Hilfe von Signatur- und Texturparametern. Berliner geowissenschaftliche Abhandlungen A 35

    Google Scholar 

  • Caine N (1995a) Snowpack influences on geomorphic processes in Green Lakes Valley, Colorado Front Range. Geogr J 161: 55–68

    Article  Google Scholar 

  • Caine N (1995b) Temporal trends in the quality of streamwater in an alpine environment: Green Lakes Valley, Colorado Front Range, U.S.A. Geografiska Annaler 78A: 207–220

    Article  Google Scholar 

  • Carr JR (1999) Classification of digital image texture using variograms. In: Atkinson PM, Tate NJ (eds) Advances in remote sensing and GIS analysis. John Wiley and Sons, New York, p 135–146

    Google Scholar 

  • Carr JR, Miranda FP (1998) The semivariogram in comparison to the co-occurrence matrix for classification of image texture. IEEE Trans Geosci Remote Sens 36 (6): 1945–1952

    Article  Google Scholar 

  • Chica-Olmo M, Abarca-Hernandez F (2000) Computing geostatistical image texture for remotely sensed data classification. Comput Geosci 26 (4): 373–384

    Article  Google Scholar 

  • Clarke GKC (1987) Fast glacier flow: ice streams, surging, and tidewater glaciers. J Geophys Res 92 (B9): 8835–8841

    Article  Google Scholar 

  • Dolgushin LD, Osipova GB (1975) Glacier surges and the problem of their forecast. Symposium on snow and ice in mountain regions, IUGG, IAHS Commission of Snow and Ice, XVth General Assembly, Moscow, 1971. IAHS Publication 104: 292–304

    Google Scholar 

  • Echelmeyer K, Clarke TS, Harrison WD (1991) Surficial glaciology of Jakobshavns Isbræ, West Greenland: Part I. Surface morphology. J Glaciol 37 (127): 368–382

    Google Scholar 

  • Echelmeyer K, Harrison WD (1990) Jakobshavns Isbræ , West Greenland: seasonal variations in velocity — or lack thereof. J Glaciol 36: 82–88

    Google Scholar 

  • Fox CG (1990) Objective classification of ridge crest terrain using two-dimensional spectral models of bathymetry. Eos Trans Amer Geophys Union 71 (43): 1571

    Google Scholar 

  • Franklin SE (1991) Image transformations in mountainous terrain and the relationship to surface patterns. Comput Geosci 17 (8): 1137–1149

    Article  Google Scholar 

  • Franklin SE, Wilson BA (1991) Spatial and spectral classification of remote-sensing imagery. Comput Geosci 17 (8): 1151–1172

    Article  Google Scholar 

  • Grafarend E (1975) Geodetic stochastic processes. Method Verf Math Phys 14: 1–27

    Google Scholar 

  • Hambrey MJ, Milnes AG (1977) Structural geology of an Alpine glacier (Griesgletscher, Valais, Switzerland). Eclogae geologicae Helvetiae 70 (3): 667–684

    Google Scholar 

  • Herzfeld UC (1990) Cova functions for unevenly and noncorrespondingly spaced processes. Comput Geosci 16 (5): 733–749

    Article  Google Scholar 

  • Herzfeld UC (1992) Least squares collocation, geophysical inverse theory, and geostatistics: A bird’s eye view. Geophys J Internat 111 (2): 237–249

    Article  Google Scholar 

  • Herzfeld UC (1993) A method for seafloor classification using directional variograms, demonstrated for data from the western flank of the Mid-Atlantic ridge. Math Geol 25 (7): 901–924

    Article  Google Scholar 

  • Herzfeld UC (1998) The 1993–1995 surge of Bering Glacier (Alaska)–a photographic documentation of crevasse patterns and environmental changes. Trierer Geograph Studien 17: 211 p, Geograph Gesellschaft Trier and Fachbereich VI – Geographie/Geowissenschaften, Universität Trier, Trier, p 211

    Google Scholar 

  • Herzfeld UC (1999) Geostatistical interpolation and classification of remote-sensing data from ice surfaces. Int J Remote Sens 20 (2): 307–327

    Article  Google Scholar 

  • Herzfeld UC (2002) Vario-functions of higher order–definition and application to characterization of snow surface roughness. Comput Geosci 28 (5): 641–660

    Article  Google Scholar 

  • Herzfeld UC, Higginson CA (1996) Automated geostatistical seafloor classification – principles, parameters, feature vectors, and discrimination criteria. Comput Geosci 22 (1) 35–52

    Google Scholar 

  • Herzfeld UC, Mayer H (1997) Surge of Bering Glacier and Bagley Ice Field, Alaska: an update to August 1995 and an interpretation of brittle-deformation patterns. J Glaciol 43 (145): 427–434

    Google Scholar 

  • Herzfeld UC, Mayer H (2003) Seasonal comparison of ice-surface structures in the ablation area of Jakobshavn Isbræ drainage system, West Greenland. Ann Glaci 37: 199–206

    Article  Google Scholar 

  • Herzfeld UC, Overbeck C (1999) Analysis and simulation of scale-dependent fractal surfaces with application to seafloor morphology. Comput Geosci 25 (9) 979–1007

    Google Scholar 

  • Herzfeld UC, Zahner O (2001) A connectionist-geostatistical approach to automated image classification, applied to the analysis of crevasse patterns in surging ice. Comput Geosci 27: 499–512

    Article  Google Scholar 

  • Herzfeld UC, Kausch B, Stauber M, Thomas A (1997) Analysis of subscale ice-surface roughness from ultrasound measurements and its relevance for monitoring environmental changes from satellites. Trierer Geograph Studien 16: 203–228

    Google Scholar 

  • Herzfeld UC, Mayer H, Feller W, Mimler M (1999) Glacier roughness surveys of Jakobshavns Isbrae Drainage Basin, West Greenland, and morphological characterization. Zeitschrift für Gletscherkunde und Glazialgeologie 35 (2): 117–146

    Google Scholar 

  • Herzfeld UC, Mayer H, Feller W, Mimler M (2000a) Geostatistical analysis of glacier-roughness data. Annals Glac 30: 235–242

    Article  Google Scholar 

  • Herzfeld UC, Stauber M, Stahl N (2000b) Geostatistical characterization of ice surfaces from ERS-1 and ERS-2 SAR data, Jakobshavn Isbræ , Greenland. Annals Glac 30: 224–234

    Article  Google Scholar 

  • Herzfeld UC, Mayer H, Caine N, Losleben M, Erbrecht T (2003) Morphogenesis of typical winter and summer snow surface patterns in a continental alpine environment. Hydrol Process 17: 619–649

    Article  Google Scholar 

  • Herzfeld UC, Clarke GKC, Mayer H, Greve R (2004) Derivation of deformation characteristics in fast-moving glaciers. Comput Geosci 30: 291–302

    Article  Google Scholar 

  • Herzfeld UC, Box JE, Steffen K, Mayer H, Caine N, Losleben MV (2006a) A case study on the influence of snow and ice surface roughness on melt energy. Zeitschrift Gletscherkunde Glazialgeol 39 (2003/2004, printed 2006): 1–42

    Google Scholar 

  • Herzfeld UC, Maslanik J, Sturm M (2006b) Geostatistical characterization of snow-depth structures on sea ice near Point Barrow, Alaska–A contribution to the AMSR-ICE03 Field Validation Campaign. IEEE Transactions on Geoscience and Remote Sensing (Special Issue on the March 2003 EOS AQUA AMSR-E Arctic Sea Ice Field Campaign) 44 (11): 3038–3056, DOI 10.1109/TGRS.2006.883349

    Google Scholar 

  • Jiang M, Stewart WK, Marra M (1994) A neural network approach to classification of sidescan sonar imagery from a Mid-Ocean Ridge area. IEEE J Oceanic Eng 19 (2): 214–224

    Article  Google Scholar 

  • Journel A (1985) The deterministic side of geostatistics. Math Geol 17 (1): 1–15

    Article  Google Scholar 

  • Journel AG, Huijbregts C (1989) Mining geostatistics, 2nd edn. Academic Press, London, p 600

    Google Scholar 

  • Kamb WB, Raymond CF, Harrison WD, Engelhardt H, Echelmeyer KA, Humphrey N,Brugman MM, Pfeffer T (1985) Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Sciemce 227 (4686): 469–479

    Google Scholar 

  • Kaula WM (1967) Theory of statistical analysis of data distributed over the sphere. Rev Geophys Space Phys 5: 83–107

    Article  Google Scholar 

  • Kondo J, Yamazawa H (1986) Aerodynamic roughness over an inhomogeneous ground surface. Bound-Layer Meteorol 35: 331–348

    Article  Google Scholar 

  • Krabill W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yungel J (1999) Rapid thinning of parts of the southern Greenland ice sheet. Science 283: 1522–1524

    Article  Google Scholar 

  • Lauritzen S (1977) The probabilistic background of some statistical methods in physical geodesy. Publ 48, Dan Geod Inst, Copenhagen, p 96

    Google Scholar 

  • Landgrebe DA (2003) Signal theory methods in multispectral remote sensing. Wiley and Sons, Hoboken, NJ

    Google Scholar 

  • Lettau H (1969) Note on aerodynamic roughness parameter estimation on the basis of roughness element description. J Appl Meteorol 8: 828–832

    Article  Google Scholar 

  • Liu S, Jernigan ME (1990) Texture analysis and discrimination in additive noise. Proc Comput Vis Graph Image Process 49: 52–67

    Article  Google Scholar 

  • Lingle CS, Post A, Herzfeld UC, Molnia BF, Krimmel RM, Roush JJ (1993) Bering Glacier surge and iceberg-calving mechanism at Vitus Lake, Alaska, U.S.A. J Glaciol 39 (133): 722–727

    Google Scholar 

  • Losleben MV (1990) Climatological data from Niwot Ridge, East Slope, Front Range, Colorado – 1989, Institute of Arctic and Alpine Research, University of Colorado, Boulder, Long-Term Ecological Research Data Report DR-90/1, p 108

    Google Scholar 

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Rem Sensing 28 (5): 823–870

    Article  Google Scholar 

  • Macdonald KC, Scheirer DS, Carbotte SM (1991) Mid-ocean ridges: discontinuities, segments, and giant cracks. Science 253 (5023): 986–994

    Google Scholar 

  • Maslanik J, Sturm M, Belmonte Rivas M, Cavalieri D, Gasiewski AJ, Heinrichs JF, Herzfeld UC, Holmgren J, Klein M, Markus T, Perovich DK, Sonntag JG, Stroeve JC, Tape K (2006) Spatial variability of Barrow-area shore-fast sea ice and its relationships to passive microwave emissivity. IEEE Trans Geosci Rem Sens (Special Issue on the March 2003 EOS AQUA AMSR-E Arctic Sea Ice Field Campaign) 44 (11): 3021–3031, DOI 10.1109/TGRS.2006.879557

    Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58: 1246–1266

    Article  Google Scholar 

  • Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Prob 5: 439–468

    Article  Google Scholar 

  • Mayer H, Herzfeld UC (2000) Structural glaciology of the fast-moving Jakobshavn Isbræ , Greenland, compared to the surging Bering Glacier, Alaska, U.S.A. Annals Glac 30: 243–249

    Article  Google Scholar 

  • Mayer H, Herzfeld UC (2001) A structural segmentation, kinematic analysis and dynamic interpretation of Jakobshavns Isbræ , West Greenland. Zeitschrift für Gletscherkunde und Glazialgeologie 37(2)(2001, printed 2002): 107–123

    Google Scholar 

  • Mayer H, Herzfeld UC, Clarke GKC (2002) Analysis of deformation types in fast-moving glaciers. Terra Nostra 4: 273–278

    Google Scholar 

  • Meier MF, Post A (1969) What are glacier surges? Can J Earth Sci 6: 807–817

    Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Methuen & Co., London (reprinted 1995, Routledge, London, New York), p 435

    Google Scholar 

  • Oliver MA, Webster R (1989) A geostatistical basis for spatial weighting in multivariate classification. Math Geol 21 (1): 15–35

    Article  Google Scholar 

  • Podlech S, Weidick A (2004) A catastrophic break-up of the front of Jakobshavn Isbræ , West Greenland, 2002/03. J Glaciol 50 (168): 153–154

    Article  Google Scholar 

  • Post A (1972) Periodic surge origin of folded medial moraines on Bering piedmont glacier, Alaska. J Glac 11 (62): 219–226

    Google Scholar 

  • Post A, LaChapelle ER (1971) Glacier Ice. University of Washington Press, Seattle, WA

    Google Scholar 

  • Ramsay JG, Lisle RJ (2000) The techniques of modern structural geology, vol 3: Applications of continuum mechanics in structural geology. Academic press, San Diego: 701–1061

    Google Scholar 

  • Raymond CF (1987) How do glaciers surge? A review. J Geophys Res 92 (B9): 9121–9134

    Article  Google Scholar 

  • Ritter ND, Hepner GF (1990) Application of an artificial neural network to land-cover classification of Thematic Mapper imagery. Comput Geosci 16 (6): 873–880

    Article  Google Scholar 

  • Serra JP (1982) Image analysis and mathematical morphology. Academic Press, London

    Google Scholar 

  • Stewart WK, Marra M, Jiang M (1992) A hierarchical approach to seafloor classification using neural networks. Proceedings of the IEEE Oceans 92 conference, Honolulu, Hawaii, 109–113

    Google Scholar 

  • Tarantola A, Valette B (1984) Generalized nonlinear inverse problems solved using the least squares criterion. In: Grafarend EW, Rapp RH (eds) Advances in geodesy. American Geophys Union, Washington DC, 69–82 (from: Rev Geophys Space Phys 20 (2)[1982]: 219–232)

    Google Scholar 

  • Thomas RH, Abdalati W, Frederick E, Krabill WB, Manizade S, Steffen K (2003) Investigation of surface melting and dynamic thinning on Jakobshavn Isbræ , Greenland. J Glaciol 49 (165): 231–239

    Article  Google Scholar 

  • Tucholke BE, Lin J (1994) A geological model for the structure of ridge segments in slow spreading ocean crust. J Geophys Res 99 (B6): 11937–11958

    Article  Google Scholar 

  • Tso B, Mather PM (2001) Classification methods for remotely sensed data. Taylor and Francis, New York.

    Google Scholar 

  • Wallace C, Watts JM, Yool S (2000) Characterizing the spatial structure of vegetation communities in the Mojave desert using geostatistical techniques. Comput Geosci 26 (4): 397–410

    Article  Google Scholar 

  • Weertman J (1964) The theory of glacier sliding. J Glaciol 5: 287–393

    Google Scholar 

  • Weszka JS, Dyer C, Rosenfeld A (1976) A comparative study of texture measures for terrain classification. IEEE Trans Syst Manage Cybern 6 (4): 2269–2285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herzfeld, U.C. (2008). Master of the Obscure—Automated Geostatistical Classification in Presence of Complex Geophysical Processes. In: Bonham-Carter, G., Cheng, Q. (eds) Progress in Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69496-0_6

Download citation

Publish with us

Policies and ethics