Advertisement

The Role of Ocular Blood Flow Abnormalities in the Pathogenesis of Glaucoma

  • Balwantray C. ChauhanEmail author
Chapter

Core Messages

  • Glaucoma is a group of optic neuropathies and a leading cause of blindness worldwide. Open-angle glaucoma is the most common form of the neuropathy clinically characterised by pathological optic disc cupping and visual field change.

  • Intraocular pressure (IOP) is uniformly recognised as the major known causative risk factor for the development and progression of the neuropathy. Treatment to lower IOP reduces the incidence and progression of glaucoma. Nonetheless, a significant proportion of patients continue to progress in spite of successful IOP reduction, suggesting that in at least some patients, other factors are responsible for the disease. One of the earliest identified additional risk factors is optic nerve head ischaemia.

  • Epidemiological studies provide compelling evidence that ocular (particularly diastolic) perfusion pressure is related to glaucoma. A putative result of faulty autoregulation to low perfusion pressure in order to maintain adequate blood flow is an...

Keywords

Optic Nerve Perfusion Pressure Optic Nerve Head Glaucoma Patient Central Retinal Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Supported by Grant MOP57851 from the Canadian Institutes of Health Research.

References

  1. 1.
    Canadian Glaucoma Study Group (2006) Canadian Glaucoma Study: 1. Study design, baseline characteristics, and preliminary analyses. Can J Ophthalmol 41:566–575Google Scholar
  2. 2.
    Collaborative Normal-Tension Glaucoma Study Group (1998) Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol 126:487–497Google Scholar
  3. 3.
    The AGIS Investigators (2000) The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 130:429–440Google Scholar
  4. 4.
    Airaksinen PJ, Tuulonen A, Werner EB (1996) Clinical evaluation of the optic disc and retinal nerve fiber layer. In: Ritch R, Shields MB, Krupin T (eds) The glaucomas. Mosby, St. Louis, pp 617–657Google Scholar
  5. 5.
    Akarsu C, Yilmaz S, Taner P, Ergin A (2004) Effect of bimatoprost on ocular circulation in patients with open-angle glaucoma or ocular hypertension. Graefes Arch Clin Exp Ophthalmol 242:814–818PubMedGoogle Scholar
  6. 6.
    Anderson DR (1983) The mechanisms of damage of the optic nerve. In: Kriegelstein GK, Leydhecker W (eds) Glaucoma update II. Springer, New York, pp 89–93Google Scholar
  7. 7.
    Anderson DR (1983) What happens to the optic disc and retina in glaucoma? Ophthalmology 90:766–770PubMedGoogle Scholar
  8. 8.
    Anderson DR, Drance SM, Schulzer M (2003) Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol 136:820–829PubMedGoogle Scholar
  9. 9.
    Arend O, Harris A, Wolter P, Remky A (2003) Evaluation of retinal haemodynamics and retinal function after application of dorzolamide, timolol and latanoprost in newly diagnosed open-angle glaucoma patients. Acta Ophthalmol Scand 81:474–479PubMedGoogle Scholar
  10. 10.
    Arend O, Remky A, Cantor LB, Harris A (2000) Altitudinal visual field asymmetry is coupled with altered retinal circulation in patients with normal pressure glaucoma. Br J Ophthalmol 84:1008–1012PubMedGoogle Scholar
  11. 11.
    Bankes JLK, Perkins ES, Tsolakis S, Wright JE (1968) Bedford glaucoma survey. Br Med J 1:791–796PubMedGoogle Scholar
  12. 12.
    Bengtsson B (1981) Aspects of the epidemiology of chronic glaucoma. Acta Ophthalmol Suppl 146:1–48Google Scholar
  13. 13.
    Bergstrand IC, Heijl A, Harris A (2002) Dorzolamide and ocular blood flow in previously untreated glaucoma patients: a controlled double-masked study. Acta Ophthalmol Scand 80:176–182PubMedGoogle Scholar
  14. 14.
    Bill A (1984) Circulation in the eye. In: Renkin EM, Michel CC (eds) Handbook of physiology, vol IV, The cardiovascular system. American Physiological Society, Bethesda, pp 1001–1034Google Scholar
  15. 15.
    Boehm AG, Breidenbach KA, Pillunat LE et al (2003) Visual function and perfusion of the optic nerve head after application of centrally acting calcium-channel blockers. Graefes Arch Clin Exp Ophthalmol 241:34–38PubMedGoogle Scholar
  16. 16.
    Bonomi L, Marchini G, Marraffa M et al (2000) Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 107:1287–1293PubMedGoogle Scholar
  17. 17.
    Bose S, Piltz JR, Breton ME (1995) Nimodipine, a centrally active calcium antagonist, exerts a beneficial effect on contrast sensitivity in patients with normal-tension glaucoma and in control subjects. Ophthalmology 102:1236–1241PubMedGoogle Scholar
  18. 18.
    Bots ML, Hofman A, De Jong PT, Grobbee DE (1996) Common carotid intima-media thickness as an indicator of atherosclerosis at other sites of the carotid artery. The Rotterdam Study. Ann Epidemiol 6:147–153PubMedGoogle Scholar
  19. 19.
    Bradford-Hill A (1965) The environment and disease. Association or causation. Proc R Soc Med 58:295–300Google Scholar
  20. 20.
    Buchi ER, Suivaizdis I, Fu J (1991) Pressure-induced retinal ischemia in rats: an experimental model for quantitative study. Ophthalmologica 203:138–147PubMedGoogle Scholar
  21. 21.
    Burgoyne CF, Downs JC (2008) Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma 17:318–328PubMedGoogle Scholar
  22. 22.
    Burgoyne CF, Downs JC, Bellezza AJ, Hart RT (2004) Three-dimensional reconstruction of normal and early glaucoma monkey optic nerve head connective tissues. Invest Ophthalmol Vis Sci 45:4388–4399PubMedGoogle Scholar
  23. 23.
    Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73PubMedGoogle Scholar
  24. 24.
    Butt Z, O’Brien C, McKillop G, Aspinall P, Allan P (1997) Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest Ophthalmol Vis Sci 38:690–696PubMedGoogle Scholar
  25. 25.
    Cellini M, Possati GL, Profazio V et al (1997) Color Doppler imaging and plasma levels of endothelin-1 in low-tension glaucoma. Acta Ophthalmol Scand Suppl 224:11–13Google Scholar
  26. 26.
    Chaturvedi N, Hedley-Whyte ET, Dreyer EB (1993) Lateral geniculate nucleus in glaucoma. Am J Ophthalmol 116:182–188PubMedGoogle Scholar
  27. 27.
    Chauhan BC, LeVatte TL, Jollimore CA et al (2004) Model of endothelin-1-induced chronic optic neuropathy in rat. Invest Ophthalmol Vis Sci 45:144–152PubMedGoogle Scholar
  28. 28.
    Chauhan BC, Mikelberg FS, Balaszi AG et al (2008) Canadian Glaucoma Study: 2. risk factors for the progression of open-angle glaucoma. Arch Ophthalmol 126:1030–1036PubMedGoogle Scholar
  29. 29.
    Choi J, Jeong J, Cho HS, Kook MS (2006) Effect of nocturnal blood pressure reduction on circadian fluctuation of mean ocular perfusion pressure: a risk ­factor for normal tension glaucoma. Invest Ophthalmol Vis Sci 47:831–836PubMedGoogle Scholar
  30. 30.
    Cioffi GA (2005) Ischemic model of optic nerve injury. Trans Am Ophthalmol Soc 103:592–613PubMedGoogle Scholar
  31. 31.
    Cioffi GA, Orgul S, Onda E, Bacon DR, Van Buskirk EM (1995) An in vivo model of chronic optic nerve ischemia: the dose-dependent effects of endothelin-1 on the optic nerve microvasculature. Curr Eye Res 14:1147–1153PubMedGoogle Scholar
  32. 32.
    Cioffi GA, Sullivan P (1999) The effect of chronic ischemia on the primate optic nerve. Eur J Ophthalmol 9(Suppl 1):S34–S36PubMedGoogle Scholar
  33. 33.
    Cioffi GA, Wang L, Fortune B et al (2004) Chronic ischemia induces regional axonal damage in experimental primate optic neuropathy. Arch Ophthalmol 122:1517–1525PubMedGoogle Scholar
  34. 34.
    Collignon-Brach J (1994) Longterm effect of topical beta-blockers on intraocular pressure and visual field sensitivity in ocular hypertension and chronic open-angle glaucoma. Surv Ophthalmol 38(Suppl): S149–S155PubMedGoogle Scholar
  35. 35.
    Costa VP, Harris A, Stefansson E et al (2003) The effects of antiglaucoma and systemic medications on ocular blood flow. Prog Retin Eye Res 22:769–805PubMedGoogle Scholar
  36. 36.
    Cursiefen C, Wisse M, Cursiefen S et al (2000) Migraine and tension headache in high-pressure and normal-pressure glaucoma. Am J Ophthalmol 129:102–104PubMedGoogle Scholar
  37. 37.
    David R, Livingston D, Luntz MH (1978) Ocular hypertension: a comparative follow-up of black and white patients. Br J Ophthalmol 62:676–678PubMedGoogle Scholar
  38. 38.
    Deokule S, Weinreb RN (2008) Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Can J Ophthalmol 43:302–307PubMedGoogle Scholar
  39. 39.
    Detry M, Boschi A, Ellinghaus G, De Plaen JF (1996) Simultaneous 24-hour monitoring of intraocular pressure and arterial blood pressure in patients with progressive and non-progressive primary open-angle glaucoma. Eur J Ophthalmol 6:273–278PubMedGoogle Scholar
  40. 40.
    Diederich D, Yang ZH, Buhler FR, Luscher TF (1990) Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve cyclooxygenase pathway. Am J Physiol 258:H445–H451PubMedGoogle Scholar
  41. 41.
    Dielemans I, Vingerling JR, Algra D et al (1995) Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study. Ophthalmology 102:54–60PubMedGoogle Scholar
  42. 42.
    Downs JC, Suh JK, Thomas KA et al (2005) Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci 46:540–546PubMedGoogle Scholar
  43. 43.
    Drance S, Anderson DR, Schulzer M (2001) Risk ­factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 131:699–708PubMedGoogle Scholar
  44. 44.
    Drance SM (1998) A comparison of the effects of betaxolol, timolol, and pilocarpine on visual function in patients with open-angle glaucoma. J Glaucoma 7:247–252PubMedGoogle Scholar
  45. 45.
    Drance SM, Douglas GR, Wijsman K, Schulzer M, Britton RJ (1988) Response of blood flow to warm and cold in normal and low-tension glaucoma patients. Am J Ophthalmol 105:35–39PubMedGoogle Scholar
  46. 46.
    Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55PubMedGoogle Scholar
  47. 47.
    Epstein DL (1997) Primary open-angle glaucoma. In: Epstein DL (ed) Chandler and Grant’s glaucoma. Lea and Febinger, Philadelphia, pp 183–231Google Scholar
  48. 48.
    Ernest JT (1975) Pathogenesis of glaucomatous optic nerve disease. Trans Am Ophthalmol Soc 73: 366–388PubMedGoogle Scholar
  49. 49.
    Feke GT, Tagawa H, Deupree DM et al (1989) Blood flow in the normal human retina. Invest Ophthalmol Vis Sci 30:58–65PubMedGoogle Scholar
  50. 50.
    Flammer J, Haefliger IO, Orgul S, Resink T (1999) Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma 8:212–219PubMedGoogle Scholar
  51. 51.
    Flammer J, Orgul S (1998) Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res 17:267–289PubMedGoogle Scholar
  52. 52.
    Flammer J, Orgul S, Costa VP et al (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393PubMedGoogle Scholar
  53. 53.
    Flammer J, Pache M, Resink T (2001) Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 20:319–349PubMedGoogle Scholar
  54. 54.
    Fontana L, Poinoosawmy D, Bunce CV, O’Brien C, Hitchings RA (1998) Pulsatile ocular blood flow investigation in asymmetric normal tension glaucoma and normal subjects. Br J Ophthalmol 82:731–736PubMedGoogle Scholar
  55. 55.
    Fortes ZB, Garcia Leme J, Scivoletto R (1983) Vascular reactivity in diabetes mellitus: role of the endothelial cell. Br J Pharmacol 79:771–781PubMedGoogle Scholar
  56. 56.
    Foster PJ, Machin D, Wong TY et al (2003) Determinants of intraocular pressure and its association with glaucomatous optic neuropathy in Chinese Singaporeans: the Tanjong Pagar Study. Invest Ophthalmol Vis Sci 44:3885–3891PubMedGoogle Scholar
  57. 57.
    Fuchsjager-Mayrl G, Wally B, Georgopoulos M et al (2004) Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 45: 834–839PubMedGoogle Scholar
  58. 58.
    Fuchsjager-Mayrl G, Wally B, Rainer G et al (2005) Effect of dorzolamide and timolol on ocular blood flow in patients with primary open angle glaucoma and ocular hypertension. Br J Ophthalmol 89:1293–1297PubMedGoogle Scholar
  59. 59.
    Galassi F, Nuzzaci G, Sodi A et al (1994) Possible correlations of ocular blood flow parameters with intraocular pressure and visual-field alterations in glaucoma: a study by means of color Doppler imaging. Ophthalmologica 208:304–308PubMedGoogle Scholar
  60. 60.
    Galassi F, Renieri G, Sodi A et al (2004) Nitric oxide proxies and ocular perfusion pressure in primary open angle glaucoma. Br J Ophthalmol 88:757–760PubMedGoogle Scholar
  61. 61.
    Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC (1995) Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 61:33–44PubMedGoogle Scholar
  62. 62.
    Gaspar AZ, Flammer J, Hendrickson P (1994) Influence of nifedipine on the visual fields of patients with optic-nerve-head diseases. Eur J Ophthalmol 4:24–28PubMedGoogle Scholar
  63. 63.
    Gasser P (1989) Ocular vasospasm: a risk factor in the pathogenesis of low-tension glaucoma. Int Ophthalmol 13:281–290PubMedGoogle Scholar
  64. 64.
    Gasser P, Flammer J (1991) Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma. Am J Ophthalmol 111: 585–588PubMedGoogle Scholar
  65. 65.
    Gasser P, Flammer J, Guthauser U, Mahler F (1990) Do vasospasms provoke ocular diseases? Angiology 41:213–220PubMedGoogle Scholar
  66. 66.
    Geyer O, Neudorfer M, Kessler A et al (1996) Effect of oral nifedipine on ocular blood flow in patients with low tension glaucoma. Br J Ophthalmol 80:1060–1062PubMedGoogle Scholar
  67. 67.
    Gordon MO, Beiser JA, Brandt JD et al (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–720; discussion 829–730PubMedGoogle Scholar
  68. 68.
    Graham SL, Drance SM (1999) Nocturnal hypotension: role in glaucoma progression. Surv Ophthalmol 43(Suppl 1):S10–S16PubMedGoogle Scholar
  69. 69.
    Graham SL, Drance SM, Wijsman K, Douglas GR, Mikelberg FS (1995) Ambulatory blood pressure monitoring in glaucoma. The nocturnal dip. Ophthalmology 102:61–69PubMedGoogle Scholar
  70. 70.
    Grieshaber MC, Mozaffarieh M, Flammer J (2007) What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol 52(Suppl 2):S144–S154PubMedGoogle Scholar
  71. 71.
    Grozdanic SD, Sakaguchi DS, Kwon YH, Kardon RH, Sonea IM (2003) Functional characterization of retina and optic nerve after acute ocular ischemia in rats. Invest Ophthalmol Vis Sci 44:2597–2605PubMedGoogle Scholar
  72. 72.
    Grunwald JE, Piltz J, Hariprasad SM, DuPont J (1998) Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci 39:2329–2336PubMedGoogle Scholar
  73. 73.
    Gupta N, Ang LC, Noel de Tilly L, Bidaisee L, Yucel YH (2006) Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 90:674–678PubMedGoogle Scholar
  74. 74.
    Hafez AS, Bizzarro R, Descovich D, Lesk MR (2005) Correlation between finger blood flow and changes in optic nerve head blood flow following therapeutic intraocular pressure reduction. J Glaucoma 14: 448–454PubMedGoogle Scholar
  75. 75.
    Hamard P, Hamard H, Dufaux J, Quesnot S (1994) Optic nerve head blood flow using a laser Doppler velocimeter and haemorheology in primary open angle glaucoma and normal pressure glaucoma. Br J Ophthalmol 78:449–453PubMedGoogle Scholar
  76. 76.
    Harju M, Vesti E (2001) Blood flow of the optic nerve head and peripapillary retina in exfoliation syndrome with unilateral glaucoma or ocular hypertension. Graefes Arch Clin Exp Ophthalmol 239:271–277PubMedGoogle Scholar
  77. 77.
    Harris A, Arend O, Chung HS et al (2000) A comparative study of betaxolol and dorzolamide effect on ocular circulation in normal-tension glaucoma patients. Ophthalmology 107:430–434PubMedGoogle Scholar
  78. 78.
    Harris A, Arend O, Kagemann L et al (1999) Dorzolamide, visual function and ocular hemodynamics in normal-tension glaucoma. J Ocul Pharmacol Ther 15:189–197PubMedGoogle Scholar
  79. 79.
    Harris A, Evans DW, Cantor LB, Martin B (1997) Hemodynamic and visual function effects of oral nifedipine in patients with normal-tension glaucoma. Am J Ophthalmol 124:296–302PubMedGoogle Scholar
  80. 80.
    Harris A, Garzozi HJ, McCranor L et al (2009) The effect of latanoprost on ocular blood flow. Int Ophthalmol 29:19–26PubMedGoogle Scholar
  81. 81.
    Harris A, Sergott RC, Spaeth GL et al (1994) Color Doppler analysis of ocular vessel blood velocity in normal-tension glaucoma. Am J Ophthalmol 118:642–649PubMedGoogle Scholar
  82. 82.
    Harris A, Spaeth G, Wilson R et al (1997) Nocturnal ophthalmic arterial hemodynamics in primary open-angle glaucoma. J Glaucoma 6:170–174PubMedGoogle Scholar
  83. 83.
    Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL (1994) Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol 117:603–624PubMedGoogle Scholar
  84. 84.
    He S, Prasanna G, Yorio T (2007) Endothelin-1-mediated signaling in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in astrocytes. Invest Ophthalmol Vis Sci 48: 3737–3745PubMedGoogle Scholar
  85. 85.
    Heijl A, Leske MC, Bengtsson B et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279PubMedGoogle Scholar
  86. 86.
    Hernandez MR, Andrzejewska WM, Neufeld AH (1990) Changes in the extracellular matrix of the human optic nerve head in primary open-angle glaucoma. Am J Ophthalmol 109:180–188PubMedGoogle Scholar
  87. 87.
    Hernandez MR, Luo XX, Andrzejewska W, Neufeld AH (1989) Age-related changes in the extracellular matrix of the human optic nerve head. Am J Ophthalmol 107:476–484PubMedGoogle Scholar
  88. 88.
    Hernandez MR, Luo XX, Igoe F, Neufeld AH (1987) Extracellular matrix of the human lamina cribrosa. Am J Ophthalmol 104:567–576PubMedGoogle Scholar
  89. 89.
    Hernandez MR, Wang N, Hanley NM, Neufeld AH (1991) Localization of collagen types I and IV mRNAs in human optic nerve head by in situ hybridization. Invest Ophthalmol Vis Sci 32:2169–2177PubMedGoogle Scholar
  90. 90.
    Hernandez MR, Ye H, Roy S (1994) Collagen type IV gene expression in human optic nerve heads with primary open angle glaucoma. Exp Eye Res 59:41–51PubMedGoogle Scholar
  91. 91.
    Hitchings RA, Spaeth GL (1977) Fluorescein angiography in chronic simple and low-tension glaucoma. Br J Ophthalmol 61:126–132PubMedGoogle Scholar
  92. 92.
    Hollo G, Lakatos P, Farkas K (1998) Cold pressor test and plasma endothelin-1 concentration in primary open-angle and capsular glaucoma. J Glaucoma 7:105–110PubMedGoogle Scholar
  93. 93.
    Hollows FC, Graham PA (1966) Intra-ocular pressure, glaucoma, and glaucoma suspects in a defined population. Br J Ophthalmol 50:570–586PubMedGoogle Scholar
  94. 94.
    Hoskins HD, Kass MA (1989) Primary open-angle glaucoma. In: Hoskins HD, Kass MA (eds) Becker-Shaffer’s diagnosis and therapy of the glaucomas. The C.V. Mosby Company, St. Louis, pp 277–307Google Scholar
  95. 95.
    Hughes WF (1991) Quantitation of ischemic damage in the rat retina. Exp Eye Res 53:573–582PubMedGoogle Scholar
  96. 96.
    Hulsman CA, Vingerling JR, Hofman A, Witteman JC, de Jong PT (2007) Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol 125:805–812PubMedGoogle Scholar
  97. 97.
    Ishida K, Yamamoto T, Kitazawa Y (1998) Clinical factors associated with progression of normal-tension glaucoma. J Glaucoma 7:372–377PubMedGoogle Scholar
  98. 98.
    James CB, Smith SE (1991) Pulsatile ocular blood flow in patients with low tension glaucoma. Br J Ophthalmol 75:466–470PubMedGoogle Scholar
  99. 99.
    Johnson EC, Deppmeier LM, Wentzien SK, Hsu I, Morrison JC (2000) Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci 41:431–442PubMedGoogle Scholar
  100. 100.
    Kaiser HJ, Flammer J, Stumpfig D, Hendrickson P (1994) Longterm visual field follow-up of glaucoma patients treated with beta-blockers. Surv Ophthalmol 38 Suppl:S156–S159; discussion S160PubMedGoogle Scholar
  101. 101.
    Kaiser HJ, Flammer J, Wenk M, Luscher T (1995) Endothelin-1 plasma levels in normal-tension glaucoma: abnormal response to postural changes. Graefes Arch Clin Exp Ophthalmol 233:484–488PubMedGoogle Scholar
  102. 102.
    Kamal D, Garway-Heath D, Ruben S et al (2003) Results of the betaxolol versus placebo treatment trial in ocular hypertension. Graefes Arch Clin Exp Ophthalmol 241:196–203PubMedGoogle Scholar
  103. 103.
    Kass MA, Heuer DK, Higginbotham EJ et al (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713; discussion 829–730PubMedGoogle Scholar
  104. 104.
    Katusic ZS, Vanhoutte PM (1989) Superoxide anion is an endothelium-derived contracting factor. Am J Physiol 257:H33–H37PubMedGoogle Scholar
  105. 105.
    Kerr J, Nelson P, O’Brien C (1998) A comparison of ocular blood flow in untreated primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol 126:42–51PubMedGoogle Scholar
  106. 106.
    Kitazawa Y, Horie T, Aoki S, Suzuki M, Nishioka K (1977) Untreated ocular hypertension. A long-term prospective study. Arch Ophthalmol 95:1180–1184PubMedGoogle Scholar
  107. 107.
    Klein BE, Klein R, Knudtson MD (2005) Intraocular pressure and systemic blood pressure: longitudinal perspective: the Beaver Dam Eye Study. Br J Ophthalmol 89:284–287PubMedGoogle Scholar
  108. 108.
    Klein BE, Klein R, Linton KL (1992) Intraocular pressure in an American community. The Beaver Dam Eye Study. Invest Ophthalmol Vis Sci 33: 2224–2228PubMedGoogle Scholar
  109. 109.
    Klein BE, Klein R, Meuer SM, Goetz LA (1993) Migraine headache and its association with open-angle glaucoma: the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci 34:3024–3027PubMedGoogle Scholar
  110. 110.
    Kunimatsu S, Mayama C, Tomidokoro A, Araie M (2006) Plasma endothelin-1 level in Japanese normal tension glaucoma patients. Curr Eye Res 31: 727–731PubMedGoogle Scholar
  111. 111.
    Labarrere CA, Zaloga GP (2004) C-reactive protein: from innocent bystander to pivotal mediator of atherosclerosis. Am J Med 117:499–507PubMedGoogle Scholar
  112. 112.
    Lam A, Bunya V, Piltz-Seymour JR (2002) Visual field loss in patients with glaucoma who have asymmetric peripapillary focal arteriolar narrowing. Arch Ophthalmol 120:1494–1497PubMedGoogle Scholar
  113. 113.
    Lesk MR, Wajszilber M, Deschenes MC (2008) The effects of systemic medications on ocular blood flow. Can J Ophthalmol 43:351–355PubMedGoogle Scholar
  114. 114.
    Leske MC, Connell AM, Wu SY, Hyman LG, Schachat AP (1995) Risk factors for open-angle glaucoma. The Barbados Eye Study. Arch Ophthalmol 113:918–924PubMedGoogle Scholar
  115. 115.
    Leske MC, Connell AM, Wu SY et al (2001) Incidence of open-angle glaucoma: the Barbados Eye Studies. The Barbados Eye Studies Group. Arch Ophthalmol 119:89–95PubMedGoogle Scholar
  116. 116.
    Leske MC, Heijl A, Hussein M et al (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121:48–56PubMedGoogle Scholar
  117. 117.
    Leske MC, Heijl A, Hyman L et al (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114:1965–1972PubMedGoogle Scholar
  118. 118.
    Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B (2008) Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 115:85–93PubMedGoogle Scholar
  119. 119.
    Leske MC, Wu SY, Nemesure B, Hennis A (2002) Incident open-angle glaucoma and blood pressure. Arch Ophthalmol 120:954–959PubMedGoogle Scholar
  120. 120.
    Levin ER (1996) Endothelins as cardiovascular peptides. Am J Nephrol 16:246–251PubMedGoogle Scholar
  121. 121.
    Levy NS, Adams CK (1975) Slow axonal protein transport and visual function following retinal and optic nerve ischemia. Invest Ophthalmol 14:91–97PubMedGoogle Scholar
  122. 122.
    Lu L, Gunja-Smith Z, Woessner JF et al (2000) Matrix metalloproteinases and collagen ultrastructure in moderate myocardial ischemia and reperfusion in vivo. Am J Physiol Heart Circ Physiol 279:H601–H609PubMedGoogle Scholar
  123. 123.
    Lumme P, Tuulonen A, Airaksinen PJ, Alanko HI (1991) Neuroretinal rim area in low tension glaucoma: effect of nifedipine and acetazolamide compared to no treatment. Acta Ophthalmol (Copenh) 69:293–298Google Scholar
  124. 124.
    Martinez A, Sanchez M (2008) Effects of dorzolamide 2% added to timolol maleate 0.5% on intraocular pressure, retrobulbar blood flow, and the progression of visual field damage in patients with primary open-angle glaucoma: a single-center, 4-year, open-label study. Clin Ther 30:1120–1134PubMedGoogle Scholar
  125. 125.
    Massy ZA, Keane WF (1996) Pathogenesis of atherosclerosis. Semin Nephrol 16:12–20PubMedGoogle Scholar
  126. 126.
    Messmer C, Flammer J, Stumpfig D (1991) Influence of betaxolol and timolol on the visual fields of patients with glaucoma. Am J Ophthalmol 112:678–681PubMedGoogle Scholar
  127. 127.
    Michelson G, Langhans MJ, Groh MJ (1996) Perfusion of the juxtapapillary retina and the ­neuroretinal rim area in primary open angle glaucoma. J Glaucoma 5:91–98PubMedGoogle Scholar
  128. 128.
    Mitchell P, Lee AJ, Rochtchina E, Wang JJ (2004) Open-angle glaucoma and systemic hypertension: the blue mountains eye study. J Glaucoma 13: 319–326PubMedGoogle Scholar
  129. 129.
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  130. 130.
    Moncada S, Vane JR (1978) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 30:293–331PubMedGoogle Scholar
  131. 131.
    Morrison JC, Dorman-Pease ME, Dunkelberger GR, Quigley HA (1990) Optic nerve head extracellular matrix in primary optic atrophy and experimental glaucoma. Arch Ophthalmol 108:1020–1024PubMedGoogle Scholar
  132. 132.
    Morrison JC, L’Hernault NL, Jerdan JA, Quigley HA (1989) Ultrastructural location of extracellular matrix components in the optic nerve head. Arch Ophthalmol 107:123–129PubMedGoogle Scholar
  133. 133.
    Muskens RP, de Voogd S, Wolfs RC et al (2007) Systemic antihypertensive medication and incident open-angle glaucoma. Ophthalmology 114:2221–2226PubMedGoogle Scholar
  134. 134.
    Netland PA, Chaturvedi N, Dreyer EB (1993) Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am J Ophthalmol 115:608–613PubMedGoogle Scholar
  135. 135.
    Nicolela MT, Buckley AR, Walman BE, Drance SM (1996) A comparative study of the effects of timolol and latanoprost on blood flow velocity of the retrobulbar vessels. Am J Ophthalmol 122:784–789PubMedGoogle Scholar
  136. 136.
    Nicolela MT, Drance SM, Rankin SJ, Buckley AR, Walman BE (1996) Color Doppler imaging in patients with asymmetric glaucoma and unilateral visual field loss. Am J Ophthalmol 121:502–510PubMedGoogle Scholar
  137. 137.
    Nicolela MT, Ferrier SN, Morrison CA et al (2003) Effects of cold-induced vasospasm in glaucoma: the role of endothelin-1. Invest Ophthalmol Vis Sci 44:2565–2572PubMedGoogle Scholar
  138. 138.
    Nicolela MT, Hnik P, Drance SM (1996) Scanning laser Doppler flowmeter study of retinal and optic disk blood flow in glaucomatous patients. Am J Ophthalmol 122:775–783PubMedGoogle Scholar
  139. 139.
    Nicolela MT, Walman BE, Buckley AR, Drance SM (1996) Various glaucomatous optic nerve appearances. A color Doppler imaging study of retrobulbar circulation. Ophthalmology 103:1670–1679PubMedGoogle Scholar
  140. 140.
    Onda E, Cioffi GA, Bacon DR, Van Buskirk EM (1995) Microvasculature of the human optic nerve. Am J Ophthalmol 120:92–102PubMedGoogle Scholar
  141. 141.
    Orgul S, Cioffi GA, Bacon DR, Van Buskirk EM (1996) An endothelin-1-induced model of chronic optic nerve ischemia in rhesus monkeys. J Glaucoma 5:135–138PubMedGoogle Scholar
  142. 142.
    Orgul S, Cioffi GA, Wilson DJ, Bacon DR, Van Buskirk EM (1996) An endothelin-1 induced model of optic nerve ischemia in the rabbit. Invest Ophthalmol Vis Sci 37:1860–1869PubMedGoogle Scholar
  143. 143.
    Osborne NN, Casson RJ, Wood JP et al (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23: 91–147PubMedGoogle Scholar
  144. 144.
    Pang IH, Clark AF (2007) Rodent models for glaucoma retinopathy and optic neuropathy. J Glaucoma 16:483–505PubMedGoogle Scholar
  145. 145.
    Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ (2000) Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci 41: 764–774PubMedGoogle Scholar
  146. 146.
    Phelps CD, Corbett JJ (1985) Migraine and low-tension glaucoma. A case-control study. Invest Ophthalmol Vis Sci 26:1105–1108PubMedGoogle Scholar
  147. 147.
    Piltz-seymour JR, Grunwald JE, Hariprasad SM, Dupont J (2001) Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol 132:63–69PubMedGoogle Scholar
  148. 148.
    Pournaras CJ (1996) Autoregulation of ocular blood flow. In: Kaiser HJ, Flammer J, Hendrickson P (eds) Ocular blood flow. Karger, Basel, pp 40–50Google Scholar
  149. 149.
    Prasanna G, Krishnamoorthy R, Clark AF, Wordinger RJ, Yorio T (2002) Human optic nerve head astrocytes as a target for endothelin-1. Invest Ophthalmol Vis Sci 43:2704–2713PubMedGoogle Scholar
  150. 150.
    Quigley HA (1999) Neuronal death in glaucoma. Prog Retin Eye Res 18:39–57PubMedGoogle Scholar
  151. 151.
    Quigley HA, Addicks EM, Green WR, Maumenee AE (1981) Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99:635–649PubMedGoogle Scholar
  152. 152.
    Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267PubMedGoogle Scholar
  153. 153.
    Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR (1983) Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 95: 673–691PubMedGoogle Scholar
  154. 154.
    Quigley HA, Nickells RW, Kerrigan LA et al (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 36:774–786PubMedGoogle Scholar
  155. 155.
    Quigley HA, West SK, Rodriguez J et al (2001) The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol 119:1819–1826PubMedGoogle Scholar
  156. 156.
    Rader J, Feuer WJ, Anderson DR (1994) Peripapillary vasoconstriction in the glaucomas and the anterior ischemic optic neuropathies. Am J Ophthalmol 117: 72–80PubMedGoogle Scholar
  157. 157.
    Rainer G, Kiss B, Dallinger S et al (2001) A double masked placebo controlled study on the effect of nifedipine on optic nerve blood flow and visual field function in patients with open angle glaucoma. Br J Clin Pharmacol 52:210–212PubMedGoogle Scholar
  158. 158.
    Rankin SJ, Drance SM (1996) Peripapillary focal retinal arteriolar narrowing in open angle glaucoma. J Glaucoma 5:22–28PubMedGoogle Scholar
  159. 159.
    Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 250:H822–H827PubMedGoogle Scholar
  160. 160.
    Saenz de Tejada I, Goldstein I, Azadzoi K, Krane RJ, Cohen RA (1989) Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N Engl J Med 320:1025–1030PubMedGoogle Scholar
  161. 161.
    Sawada A, Kitazawa Y, Yamamoto T, Okabe I, Ichien K (1996) Prevention of visual field defect progression with brovincamine in eyes with normal-tension glaucoma. Ophthalmology 103:283–288PubMedGoogle Scholar
  162. 162.
    Schulzer M, Drance SM, Carter CJ et al (1990) Biostatistical evidence for two distinct chronic open angle glaucoma populations. Br J Ophthalmol 74:196–200PubMedGoogle Scholar
  163. 163.
    Schumann J, Orgul S, Gugleta K, Dubler B, Flammer J (2000) Interocular difference in progression of glaucoma correlates with interocular differences in retrobulbar circulation. Am J Ophthalmol 129: 728–733PubMedGoogle Scholar
  164. 164.
    Schwartz B, Rieser JC, Fishbein SL (1977) Fluorescein angiographic defects of the optic disc in glaucoma. Arch Ophthalmol 95:1961–1974PubMedGoogle Scholar
  165. 165.
    Selles-Navarro I, Villegas-Perez MP, Salvador-Silva M, Ruiz-Gomez JM, Vidal-Sanz M (1996) Retinal ganglion cell death after different transient periods of pressure-induced ischemia and survival intervals. A quantitative in vivo study. Invest Ophthalmol Vis Sci 37:2002–2014PubMedGoogle Scholar
  166. 166.
    Shimokawa H, Aarhus LL, Vanhoutte PM (1987) Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res 61:256–270PubMedGoogle Scholar
  167. 167.
    Shimokawa H, Flavahan NA, Vanhoutte PM (1989) Natural course of the impairment of endothelium-dependent relaxations after balloon endothelium removal in porcine coronary arteries. Possible dysfunction of a pertussis toxin-sensitive G protein. Circ Res 65:740–753PubMedGoogle Scholar
  168. 168.
    Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46:4189–4199PubMedGoogle Scholar
  169. 169.
    Silver DM, Farrell RA, Langham ME, O’Brien V, Schilder P (1989) Estimation of pulsatile ocular blood flow from intraocular pressure. Acta Ophthalmol Suppl 191:25–29PubMedGoogle Scholar
  170. 170.
    Sommer A (1989) Intraocular pressure and glaucoma. Am J Ophthalmol 107:186–188PubMedGoogle Scholar
  171. 171.
    Sommer A, Tielsch JM, Katz J et al (1991) Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol 109:1090–1095PubMedGoogle Scholar
  172. 172.
    Sossi N, Anderson DR (1983) Blockage of axonal transport in optic nerve induced by elevation of intraocular pressure. Effect of arterial hypertension induced by angiotensin I. Arch Ophthalmol 101: 94–97PubMedGoogle Scholar
  173. 173.
    Stromberg U (1962) Ocular hypertension. Acta Ophthalmol Suppl 69:1–75Google Scholar
  174. 174.
    Sugiyama T, Moriya S, Oku H, Azuma I (1995) Association of endothelin-1 with normal tension glaucoma: clinical and fundamental studies. Surv Ophthalmol 39(Suppl 1):S49–S56PubMedGoogle Scholar
  175. 175.
    Tengroth B, Rehnberg M, Amitzboll T (1985) A comparative analysis of the collagen type and distribution in the trabecular meshwork, sclera, lamina cribrosa and the optic nerve in the human eye. Acta Ophthalmol Suppl 173:91–93PubMedGoogle Scholar
  176. 176.
    Tezel G, Kass MA, Kolker AE, Becker B, Wax MB (1997) Plasma and aqueous humor endothelin levels in primary open-angle glaucoma. J Glaucoma 6:83–89PubMedGoogle Scholar
  177. 177.
    Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt JC (1995) Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol 113:216–221PubMedGoogle Scholar
  178. 178.
    Tokunaga T, Kashiwagi K, Tsumura T, Taguchi K, Tsukahara S (2004) Association between nocturnal blood pressure reduction and progression of visual field defect in patients with primary open-angle glaucoma or normal-tension glaucoma. Jpn J Ophthalmol 48:380–385PubMedGoogle Scholar
  179. 179.
    Tomita G, Niwa Y, Shinohara H et al (1999) Changes in optic nerve head blood flow and retrobular hemodynamics following calcium-channel blocker treatment of normal-tension glaucoma. Int Ophthalmol 23:3–10PubMedGoogle Scholar
  180. 180.
    Tomita K, Araie M, Tamaki Y, Nagahara M, Sugiyama T (1999) Effects of nilvadipine, a calcium antagonist, on rabbit ocular circulation and optic nerve head circulation in NTG subjects. Invest Ophthalmol Vis Sci 40:1144–1151PubMedGoogle Scholar
  181. 181.
    Trew DR, Smith SE (1991) Postural studies in pulsatile ocular blood flow: II. Chronic open angle glaucoma. Br J Ophthalmol 75:71–75PubMedGoogle Scholar
  182. 182.
    Tsang D, Yew DT, Lam ST (1985) Acute responses of rat retina after optic nerve ligation: a biochemical and histochemical study. Brain Res 336:289–295PubMedGoogle Scholar
  183. 183.
    Turacli ME, Ozden RG, Gurses MA (1998) The effect of betaxolol on ocular blood flow and visual fields in patients with normotension glaucoma. Eur J Ophthalmol 8:62–66PubMedGoogle Scholar
  184. 184.
    Wang JJ, Mitchell P, Smith W (1997) Is there an association between migraine headache and open-angle glaucoma? Findings from the Blue Mountains Eye Study. Ophthalmology 104:1714–1719PubMedGoogle Scholar
  185. 185.
    Wang X, LeVatte TL, Archibald ML, Chauhan BC (2009) Increase in endothelin B receptor expression in optic nerve astrocytes in endothelin-1 induced chronic experimental optic neuropathy. Exp Eye Res 88:378–385PubMedGoogle Scholar
  186. 186.
    Warner TD, Klemm P (1996) What turns on the endothelins? Inflamm Res 45:51–53PubMedGoogle Scholar
  187. 187.
    Watson PG, Barnett MF, Parker V, Haybittle J (2001) A 7 year prospective comparative study of three topical beta blockers in the management of primary open angle glaucoma. Br J Ophthalmol 85:962–968PubMedGoogle Scholar
  188. 188.
    Weber AJ, Chen H, Hubbard WC, Kaufman PL (2000) Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci 41:1370–1379PubMedGoogle Scholar
  189. 189.
    Woodburn KR, Lowe GD (1997) Fibrinogen, fibrin turnover, endothelial products and vascular surgery. Br J Surg 84:1059–1064PubMedGoogle Scholar
  190. 190.
    Wu SY, Leske MC (1997) Associations with intraocular pressure in the Barbados Eye Study. Arch Ophthalmol 115:1572–1576PubMedGoogle Scholar
  191. 191.
    Wu SY, Nemesure B, Hennis A, Leske MC (2006) Nine-year changes in intraocular pressure: the Barbados Eye Studies. Arch Ophthalmol 124:1631–1636PubMedGoogle Scholar
  192. 192.
    Xu L, Wang H, Wang Y, Jonas JB (2007) Intraocular pressure correlated with arterial blood pressure: the Beijing eye study. Am J Ophthalmol 144:461–462PubMedGoogle Scholar
  193. 193.
    Yamamoto T, Niwa Y, Kawakami H, Kitazawa Y (1998) The effect of nilvadipine, a calcium-channel blocker, on the hemodynamics of retrobulbar vessels in normal-tension glaucoma. J Glaucoma 7:301–305PubMedGoogle Scholar
  194. 194.
    Yamazaki Y, Drance SM (1997) The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol 124:287–295PubMedGoogle Scholar
  195. 195.
    Yanagisawa M, Kurihara H, Kimura S et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415PubMedGoogle Scholar
  196. 196.
    Yu DY, Su EN, Cringle SJ, Yu PK (2003) Isolated preparations of ocular vasculature and their applications in ophthalmic research. Prog Retin Eye Res 22:135–169PubMedGoogle Scholar
  197. 197.
    Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN (2000) Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 118:378–384PubMedGoogle Scholar
  198. 198.
    Zeitz O, Matthiessen ET, Reuss J et al (2005) Effects of glaucoma drugs on ocular hemodynamics in normal tension glaucoma: a randomized trial comparing bimatoprost and latanoprost with dorzolamide [ISRCTN18873428]. BMC Ophthalmol 5:6PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesDalhousie UniversityHalifaxCanada

Personalised recommendations