Ocular Blood Flow in Diabetes: Contribution to the Microvascular Lesions of Diabetic Retinopathy

  • Tim M. CurtisEmail author
  • Tom A. Gardiner

Core Messages

  • Diabetic retinopathy is a leading cause of vision loss in the working population of developed countries.

  • Changes in retinal haemodynamics have been proposed to play a key role in the initiation and progression of diabetic retinopathy.

  • Substantial evidence suggests that there is an early reduction in retinal perfusion prior to the onset of diabetic retinopathy followed by a gradual increase in blood flow as the disease progresses.

  • Two major mechanisms have been ­proposed to explain how hyperglycaemia decreases retinal blood flow in early diabetes, namely, protein kinase C (PKC) activation and ion channel dysfunction in the contractile mural cells of retinal microvessels.

  • The functional reduction in retinal blood flow observed during early diabetic retinopathy may be additive or synergistic to pro-inflammatory changes, leukostasis and vaso-occlusion and thus may be intimately linked to the progressive ischaemic hypoxia and increased blood flow associated with later stages...


Vascular Endothelial Growth Factor Diabetic Retinopathy Proliferative Diabetic Retinopathy Proliferative Retinopathy Ocular Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anonymous (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 329:977–986Google Scholar
  2. 2.
    Anonymous (1985) Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol 103:1796–1806Google Scholar
  3. 3.
    Anonymous (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:837–853Google Scholar
  4. 4.
    Anonymous (1998) Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. UK Prospective Diabetes Study Group. BMJ 317:713–720Google Scholar
  5. 5.
    Anonymous (1998) Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 317:703–713Google Scholar
  6. 6.
    Anonymous (1991) Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98:766–785Google Scholar
  7. 7.
    Adamis AP, Altaweel M, Bressler NM et al (2006) Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology 113:23–28PubMedGoogle Scholar
  8. 8.
    Aiello LP, Avery RL, Arrigg PG et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487PubMedGoogle Scholar
  9. 9.
    Aiello LP, Clermont A, Arora V, Davis MD, Sheetz MJ, Bursell SE (2006) Inhibition of PKC beta by oral administration of ruboxistaurin is well tolerated and ameliorates diabetes-induced retinal hemodynamic abnormalities in patients. Invest Ophthalmol Vis Sci 47:86–92PubMedGoogle Scholar
  10. 10.
    Aiello LP, Gardner TW, King GL et al (1998) Diabetic retinopathy. Diabetes Care 21:143–156PubMedGoogle Scholar
  11. 11.
    Aiello LP, Pierce EA, Foley ED et al (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92:10457–10461PubMedGoogle Scholar
  12. 12.
    Alder VA, Su EN, Yu DY, Cringle SJ, Yu PK (1997) Diabetic retinopathy: early functional changes. Clin Exp Pharmacol Physiol 24:785–788PubMedGoogle Scholar
  13. 13.
    Amos AF, McCarty DJ, Zimmet P (1997) The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 14(Suppl 5):S1–S85PubMedGoogle Scholar
  14. 14.
    Anderson HR, Stitt AW, Gardiner TA, Archer DB (1995) Diabetic retinopathy: morphometric analysis of basement membrane thickening of capillaries in different retinal layers within arterial and venous environments. Br J Ophthalmol 79:1120–1123PubMedGoogle Scholar
  15. 15.
    Antonetti DA, Barber AJ, Bronson SK et al (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55:2401–2411PubMedGoogle Scholar
  16. 16.
    Arend O, Wolf S, Jung F et al (1991) Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol 75:514–518PubMedGoogle Scholar
  17. 17.
    Arend O, Wolf S, Remky A et al (1994) Perifoveal microcirculation with non-insulin-dependent diabetes mellitus. Graefes Arch Clin Exp Ophthalmol 232:225–231PubMedGoogle Scholar
  18. 18.
    Arevalo JF, Fromow-Guerra J, Quiroz-Mercado H et al (2007) Primary intravitreal bevacizumab (Avastin) for diabetic macular edema: results from the Pan-American Collaborative Retina Study Group at 6-month follow-up. Ophthalmology 114:743–750PubMedGoogle Scholar
  19. 19.
    Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523PubMedGoogle Scholar
  20. 20.
    Ashton N (1951) Retinal micro-aneurysms in the non-diabetic subject. Br J Ophthalmol 35:189–212PubMedGoogle Scholar
  21. 21.
    Ashton N (1953) Arteriolar involvement in diabetic retinopathy. Br J Ophthalmol 37:282–292PubMedGoogle Scholar
  22. 22.
    Avery RL, Pearlman J, Pieramici DJ et al (2006) Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 113:1695.e1–1695.e15Google Scholar
  23. 23.
    Balabanov R, Dore-Duffy P (1998) Role of the CNS microvascular pericyte in the blood–brain barrier. J Neurosci Res 53:637–644PubMedGoogle Scholar
  24. 24.
    Ballantyne AJ, Loewenstein A (1943) The pathology of diabetic retinopathy. Trans Ophthalmol Soc UK 63:95–113Google Scholar
  25. 25.
    Bek T (2000) Histopathology and pathophysiology of diabetic retinopathy. In: van Bijsterveld PO (ed) Diabetic retinopathy. Martin Dunitz Ltd, London, pp 169–188Google Scholar
  26. 26.
    Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598PubMedGoogle Scholar
  27. 27.
    Berkowitz BA, Kowluru RA, Frank RN, Kern TS, Hohman TC, Prakash M (1999) Subnormal retinal oxygenation response precedes diabetic-like retinopathy. Invest Ophthalmol Vis Sci 40:2100–2105PubMedGoogle Scholar
  28. 28.
    Bertram B, Wolf S, Arend O, Schulte K, Reim M (1992) Retinal circulation and current blood glucose value in diabetic retinopathy. Klin Monatsbl Augenheilkd 200:654–657PubMedGoogle Scholar
  29. 29.
    Bertram B, Wolf S, Fiehofer S, Schulte K, Arend O, Reim M (1991) Retinal circulation times in diabetes mellitus type 1. Br J Ophthalmol 75:462–465PubMedGoogle Scholar
  30. 30.
    Bienvenu K, Granger DN, Perry MA (1995) Flow dependence of leukocyte-endothelial cell adhesion in postcapillary venules. In: Granger DN, Schmid-Schonbein H (eds) Physiology and pathophysiology of leuckocyte adhesion. Oxford University Press, New York, pp 278–293Google Scholar
  31. 31.
    Bjarnegard M, Enge M, Norlin J et al (2004) Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131:1847–1857PubMedGoogle Scholar
  32. 32.
    Brazitikos PD, Pournaras CJ, Munoz JL, Tsacopoulos M (1993) Microinjection of L-lactate in the preretinal vitreous induces segmental vasodilation in the inner retina of miniature pigs. Invest Ophthalmol Vis Sci 34:1744–1752PubMedGoogle Scholar
  33. 33.
    Brenner R, Perez GJ, Bonev AD et al (2000) Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 407:870–876PubMedGoogle Scholar
  34. 34.
    Bresnick GH, Davis MD, Myers FL, de Venecia G (1977) Clinicopathologic correlations in diabetic retinopathy. II. Clinical and histologic appearances of retinal capillary microaneurysms. Arch Ophthalmol 95:1215–1220PubMedGoogle Scholar
  35. 35.
    Budzynski E, Smith JH, Bryar P, Birol G, Linsenmeier RA (2008) Effects of photocoagulation on intraretinal PO2 in cat. Invest Ophthalmol Vis Sci 49:380–389PubMedGoogle Scholar
  36. 36.
    Bursell SE, Clermont AC, Kinsley BT, Simonson DC, Aiello LM, Wolpert HA (1996) Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci 37:886–897PubMedGoogle Scholar
  37. 37.
    Bursell SE, Clermont AC, Shiba T, King GL (1992) Evaluating retinal circulation using video fluorescein angiography in control and diabetic rats. Curr Eye Res 11:287–295PubMedGoogle Scholar
  38. 38.
    Bursell SE, Takagi C, Clermont AC et al (1997) Specific retinal diacylglycerol and protein kinase C beta isoform modulation mimics abnormal retinal hemodynamics in diabetic rats. Invest Ophthalmol Vis Sci 38:2711–2720PubMedGoogle Scholar
  39. 39.
    Chakrabarti S, Gan XT, Merry A, Karmazyn M, Sima AA (1998) Augmented retinal endothelin-1, endothelin-3, endothelinA and endothelinB gene expression in chronic diabetes. Curr Eye Res 17:301–307PubMedGoogle Scholar
  40. 40.
    Chakrabarti S, Sima AA (1997) Endothelin-1 and endothelin-3-like immunoreactivity in the eyes of diabetic and non-diabetic BB/W rats. Diabetes Res Clin Pract 37:109–120PubMedGoogle Scholar
  41. 41.
    Chakrabarti S, Sima AA (1987) Pathogenetic heterogeneity in retinal capillary basement membrane thickening in the diabetic BB-rat. Diabetologia 30:966–968PubMedGoogle Scholar
  42. 42.
    Chakravarthy U, Gardiner TA (1999) Endothelium-derived agents in pericyte function/dysfunction. Prog Retin Eye Res 18:511–527PubMedGoogle Scholar
  43. 43.
    Chakravarthy U, Hayes RG, Stitt AW, Douglas A (1997) Endothelin expression in ocular tissues of diabetic and insulin-treated rats. Invest Ophthalmol Vis Sci 38:2144–2151PubMedGoogle Scholar
  44. 44.
    Chen W, Esselman WJ, Jump DB, Busik JV (2005) Anti-inflammatory effect of docosahexaenoic acid on cytokine-induced adhesion molecule expression in human retinal vascular endothelial cells. Invest Ophthalmol Vis Sci 46:4342–4347PubMedGoogle Scholar
  45. 45.
    Chibber R, Ben-Mahmud BM, Chibber S, Kohner EM (2007) Leukocytes in diabetic retinopathy. Curr Diabetes Rev 3:3–14PubMedGoogle Scholar
  46. 46.
    Ciulla TA, Harris A, Latkany P et al (2002) Ocular perfusion abnormalities in diabetes. Acta Ophthalmol Scand 80:468–477PubMedGoogle Scholar
  47. 47.
    Clermont AC, Aiello LP, Mori F, Aiello LM, Bursell SE (1997) Vascular endothelial growth factor and severity of nonproliferative diabetic retinopathy mediate retinal hemodynamics in vivo: a potential role for vascular endothelial growth factor in the progression of nonproliferative diabetic retinopathy. Am J Ophthalmol 124:433–446PubMedGoogle Scholar
  48. 48.
    Clermont AC, Brittis M, Shiba T, McGovern T, King GL, Bursell SE (1994) Normalization of retinal blood flow in diabetic rats with primary intervention using insulin pumps. Invest Ophthalmol Vis Sci 35:981–990PubMedGoogle Scholar
  49. 49.
    Clermont AC, Bursell SE (2007) Retinal blood flow in diabetes. Microcirculation 14:49–61PubMedGoogle Scholar
  50. 50.
    Cogan DG, Kuwabara T (1967) The mural cell in perspective. Arch Ophthalmol 78:133–139PubMedGoogle Scholar
  51. 51.
    Cogan DG, Toussaint D, Kuwabara T (1961) Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 66:366–378PubMedGoogle Scholar
  52. 52.
    Cox DH, Aldrich RW (2000) Role of the beta1 subunit in large-conductance Ca(2+)-activated K(+) channel gating energetics. Mechanisms of enhanced Ca(2+) sensitivity. J Gen Physiol 116:411–432PubMedGoogle Scholar
  53. 53.
    Cunha-Vaz JG, Fonseca JR, de Abreu JR, Lima JJ (1978) Studies on retinal blood flow. II. Diabetic retinopathy. Arch Ophthalmol 96:809–811PubMedGoogle Scholar
  54. 54.
    Cunningham ET Jr, Adamis AP, Altaweel M et al (2005) A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 112:1747–1757PubMedGoogle Scholar
  55. 55.
    Curtis TM, Major EH, Trimble ER, Scholfield CN (2003) Diabetes-induced activation of protein kinase C inhibits store-operated Ca2+ uptake in rat retinal microvascular smooth muscle. Diabetologia 46:1252–1259PubMedGoogle Scholar
  56. 56.
    Curtis TM, Scholfield CN (2004) The role of lipids and protein kinase Cs in the pathogenesis of diabetic retinopathy. Diabetes Metab Res Rev 20:28–43PubMedGoogle Scholar
  57. 57.
    Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D’Amore PA (2003) Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 264:275–288PubMedGoogle Scholar
  58. 58.
    de Gooyer TE, Stevenson KA, Humphries P, Simpson DA, Gardiner TA, Stitt AW (2006) Retinopathy is reduced during experimental diabetes in a mouse model of outer retinal degeneration. Invest Ophthalmol Vis Sci 47:5561–5568PubMedGoogle Scholar
  59. 59.
    Dean FM, Arden GB, Dornhorst A (1997) Partial reversal of protan and tritan colour defects with inhaled oxygen in insulin dependent diabetic subjects. Br J Ophthalmol 81:27–30PubMedGoogle Scholar
  60. 60.
    Delaey C, Boussery K, Van de Voorde J (2000) A retinal-derived relaxing factor mediates the hypoxic vasodilation of retinal arteries. Invest Ophthalmol Vis Sci 41:3555–3560PubMedGoogle Scholar
  61. 61.
    Delaey C, Van de Voorde J (2000) Pressure-induced myogenic responses in isolated bovine retinal arteries. Invest Ophthalmol Vis Sci 41:1871–1875PubMedGoogle Scholar
  62. 62.
    Delaey C, Van de Voorde J (2000) Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res 32:249–256PubMedGoogle Scholar
  63. 63.
    Dimmeler S, Assmus B, Hermann C, Haendeler J, Zeiher AM (1998) Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis. Circ Res 83:334–341PubMedGoogle Scholar
  64. 64.
    Ditzel J, Standl E (1975) The problem of tissue oxygenation in diabetes mellitus. I. Its relation to the early functional changes in the microcirculation of diabetic subjects. Acta Med Scand Suppl 578:49–58PubMedGoogle Scholar
  65. 65.
    Dumskyj MJ, Eriksen JE, Dore CJ, Kohner EM (1996) Autoregulation in the human retinal circulation: assessment using isometric exercise, laser Doppler velocimetry, and computer-assisted image analysis. Microvasc Res 51:378–392PubMedGoogle Scholar
  66. 66.
    Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW (2008) Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab 10:53–63PubMedGoogle Scholar
  67. 67.
    Engerman RL (1989) Pathogenesis of diabetic retinopathy. Diabetes 38:1203–1206PubMedGoogle Scholar
  68. 68.
    Erickson KK, Sundstrom JM, Antonetti DA (2007) Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis 10:103–117PubMedGoogle Scholar
  69. 69.
    Ernest JT, Goldstick TK, Engerman RL (1983) Hyperglycemia impairs retinal oxygen autoregulation in normal and diabetic dogs. Invest Ophthalmol Vis Sci 24:985–989PubMedGoogle Scholar
  70. 70.
    Essner E, Lin WL (1988) Immunocytochemical localization of laminin, type IV collagen and fibronectin in rat retinal vessels. Exp Eye Res 47:317–327PubMedGoogle Scholar
  71. 71.
    Fadini GP, Agostini C, Avogaro A (2005) Endothelial progenitor cells and vascular biology in diabetes mellitus: current knowledge and future perspectives. Curr Diabetes Rev 1:41–58PubMedGoogle Scholar
  72. 72.
    Falck A, Laatikainen L (1995) Retinal vasodilation and hyperglycaemia in diabetic children and adolescents. Acta Ophthalmol Scand 73:119–124PubMedGoogle Scholar
  73. 73.
    Feke GT, Buzney SM, Ogasawara H et al (1994) Retinal circulatory abnormalities in type 1 diabetes. Invest Ophthalmol Vis Sci 35:2968–2975PubMedGoogle Scholar
  74. 74.
    Feke GT, Tagawa H, Yoshida A et al (1985) Retinal circulatory changes related to retinopathy progression in insulin-dependent diabetes mellitus. Ophthalmology 92:1517–1522PubMedGoogle Scholar
  75. 75.
    Ferris FL III, Patz A (1984) Macular edema. A complication of diabetic retinopathy. Surv Ophthalmol 28 Suppl:452–461PubMedGoogle Scholar
  76. 76.
    Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58PubMedGoogle Scholar
  77. 77.
    Friedenwald JS (1950) Diabetic retinopathy. Am J Ophthalmol 33:1187–1199PubMedGoogle Scholar
  78. 78.
    Gardiner TA, Anderson HR, Stitt AW (2003) Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol 201:328–333PubMedGoogle Scholar
  79. 79.
    Gardiner TA, Archer DB, Curtis TM, Stitt AW (2007) Arteriolar involvement in the microvascular lesions of diabetic retinopathy: implications for pathogenesis. Microcirculation 14:25–38PubMedGoogle Scholar
  80. 80.
    Gardiner TA, Gibson DS, de Gooyer TE, de la Cruz VF, McDonald DM, Stitt AW (2005) Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am J Pathol 166:637–644PubMedGoogle Scholar
  81. 81.
    Gardiner TA, Stitt AW, Anderson HR, Archer DB (1994) Selective loss of vascular smooth muscle cells in the retinal microcirculation of diabetic dogs. Br J Ophthalmol 78:54–60PubMedGoogle Scholar
  82. 82.
    Garhofer G, Zawinka C, Resch H, Menke M, Schmetterer L, Dorner GT (2003) Effect of intravenous administration of sodium-lactate on retinal blood flow in healthy subjects. Invest Ophthalmol Vis Sci 44:3972–3976PubMedGoogle Scholar
  83. 83.
    Garner A (1970) Pathology of diabetic retinopathy. Br Med Bull 26:137–142PubMedGoogle Scholar
  84. 84.
    Gidday JM, Park TS (1993) Adenosine-mediated autoregulation of retinal arteriolar tone in the piglet. Invest Ophthalmol Vis Sci 34:2713–2719PubMedGoogle Scholar
  85. 85.
    Gillow JT, Gibson JM, Dodson PM (1999) Hypertension and diabetic retinopathy – what’s the story? Br J Ophthalmol 83:1083–1087PubMedGoogle Scholar
  86. 86.
    Gilmore ED, Hudson C, Nrusimhadevara RK et al (2007) Retinal arteriolar diameter, blood velocity, and blood flow response to an isocapnic hyperoxic provocation in early sight-threatening diabetic retinopathy. Invest Ophthalmol Vis Sci 48:1744–1750PubMedGoogle Scholar
  87. 87.
    Girach A, Lund-Andersen H (2007) Diabetic macular oedema: a clinical overview. Int J Clin Pract 61:88–97PubMedGoogle Scholar
  88. 88.
    Gottfredsdottir MS, Stefansson E, Jonasson F, Gislason I (1993) Retinal vasoconstriction after laser treatment for diabetic macular edema. Am J Ophthalmol 115:64–67PubMedGoogle Scholar
  89. 89.
    Grunwald JE, Brucker AJ, Grunwald SE, Riva CE (1993) Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study. Invest Ophthalmol Vis Sci 34:66–71PubMedGoogle Scholar
  90. 90.
    Grunwald JE, Brucker AJ, Schwartz SS et al (1990) Diabetic glycemic control and retinal blood flow. Diabetes 39:602–607PubMedGoogle Scholar
  91. 91.
    Grunwald JE, Riva CE, Baine J, Brucker AJ (1992) Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. Invest Ophthalmol Vis Sci 33:356–363PubMedGoogle Scholar
  92. 92.
    Grunwald JE, Riva CE, Brucker AJ, Sinclair SH, Petrig BL (1984) Altered retinal vascular response to 100% oxygen breathing in diabetes mellitus. Ophthalmology 91:1447–1452PubMedGoogle Scholar
  93. 93.
    Grunwald JE, Riva CE, Brucker AJ, Sinclair SH, Petrig BL (1986) Effect of panretinal photocoagulation on retinal blood flow in proliferative diabetic retinopathy. Ophthalmology 93:590–595PubMedGoogle Scholar
  94. 94.
    Hamilton CW, Chandler D, Klintworth GK, Machemer R (1982) A transmission and scanning electron microscopic study of surgically excised preretinal membrane proliferations in diabetes mellitus. Am J Ophthalmol 94:473–488PubMedGoogle Scholar
  95. 95.
    Harhaj NS, Felinski EA, Wolpert EB, Sundstrom JM, Gardner TW, Antonetti DA (2006) VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest Ophthalmol Vis Sci 47:5106–5115PubMedGoogle Scholar
  96. 96.
    Haritoglou C, Kook D, Neubauer A et al (2006) Intravitreal bevacizumab (Avastin) therapy for persistent diffuse diabetic macular edema. Retina 26:999–1005PubMedGoogle Scholar
  97. 97.
    Harris A, Arend O, Danis RP, Evans D, Wolf S, Martin BJ (1996) Hyperoxia improves contrast sensitivity in early diabetic retinopathy. Br J Ophthalmol 80:209–213PubMedGoogle Scholar
  98. 98.
    Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedGoogle Scholar
  99. 99.
    Hein TW, Xu W, Kuo L (2006) Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels. Invest Ophthalmol Vis Sci 47:693–699PubMedGoogle Scholar
  100. 100.
    Hellstedt T, Immonen I (1996) Disappearance and formation rates of microaneurysms in early diabetic retinopathy. Br J Ophthalmol 80:135–139PubMedGoogle Scholar
  101. 101.
    Higashi S, Clermont AC, Dhir V, Bursell SE (1998) Reversibility of retinal flow abnormalities is disease-duration dependent in diabetic rats. Diabetes 47:653–659PubMedGoogle Scholar
  102. 102.
    Hill DW (1977) The regional distribution of retinal circulation. Ann R Coll Surg Engl 59:470–475PubMedGoogle Scholar
  103. 103.
    Ishii H, Jirousek MR, Koya D et al (1996) Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 272:728–731PubMedGoogle Scholar
  104. 104.
    Jorge R, Costa RA, Calucci D, Cintra LP, Scott IU (2006) Intravitreal bevacizumab (Avastin) for persistent new vessels in diabetic retinopathy (IBEPE study). Retina 26:1006–1013PubMedGoogle Scholar
  105. 105.
    Joussen AM, Murata T, Tsujikawa A, Kirchhof B, Bursell SE, Adamis AP (2001) Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol 158:147–152PubMedGoogle Scholar
  106. 106.
    Joussen AM, Poulaki V, Mitsiades N et al (2003) Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J 17:76–78PubMedGoogle Scholar
  107. 107.
    Kaaja R, Loukovaara S (2007) Progression of retinopathy in type 1 diabetic women during pregnancy. Curr Diabetes Rev 3:85–93PubMedGoogle Scholar
  108. 108.
    Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007:95103PubMedGoogle Scholar
  109. 109.
    Kern TS, Engerman RL (1995) Vascular lesions in diabetes are distributed non-uniformly within the retina. Exp Eye Res 60:545–549PubMedGoogle Scholar
  110. 110.
    King H, Aubert RE, Herman WH (1998) Global ­burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431PubMedGoogle Scholar
  111. 111.
    Klein R, Klein BE, Moss SE (1989) The Wisconsin epidemiological study of diabetic retinopathy: a review. Diabetes Metab Rev 5:559–570PubMedGoogle Scholar
  112. 112.
    Klein R, Klein BE, Moss SE, Cruickshanks KJ (1995) The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XV. The long-term incidence of macular edema. Ophthalmology 102:7–16PubMedGoogle Scholar
  113. 113.
    Klein R, Klein BE, Moss SE, Davis MD, DeMets DL (1984) The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 102:520–526PubMedGoogle Scholar
  114. 114.
    Klein R, Klein BE, Moss SE, Davis MD, DeMets DL (1984) The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol 102:527–532PubMedGoogle Scholar
  115. 115.
    Klein R, Klein BE, Moss SE et al (2003) Retinal vascular abnormalities in persons with type 1 diabetes: the Wisconsin Epidemiologic Study of Diabetic Retinopathy: XVIII. Ophthalmology 110:2118–2125PubMedGoogle Scholar
  116. 116.
    Klein R, Meuer SM, Moss SE, Klein BE (1995) Retinal microaneurysm counts and 10-year progression of diabetic retinopathy. Arch Ophthalmol 113:1386–1391PubMedGoogle Scholar
  117. 117.
    Knaus HG, Folander K, Garcia-Calvo M et al (1994) Primary sequence and immunological characterization of beta-subunit of high conductance Ca(2+)-activated K+ channel from smooth muscle. J Biol Chem 269:17274–17278PubMedGoogle Scholar
  118. 118.
    Kohner EM, Hamilton AM, Saunders SJ, Sutcliffe BA, Bulpitt CJ (1975) The retinal blood flow in ­diabetes. Diabetologia 11:27–33PubMedGoogle Scholar
  119. 119.
    Kohner EM, Henkind P (1970) Correlation of fluorescein angiogram and retinal digest in diabetic retinopathy. Am J Ophthalmol 69:403–414PubMedGoogle Scholar
  120. 120.
    Kohner EM, Patel V, Rassam SM (1995) Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes 44:603–607PubMedGoogle Scholar
  121. 121.
    Koya D, King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes 47:859–866PubMedGoogle Scholar
  122. 122.
    Kristinsson JK, Gottfredsdottir MS, Stefansson E (1997) Retinal vessel dilatation and elongation precedes diabetic macular oedema. Br J Ophthalmol 81:274–278PubMedGoogle Scholar
  123. 123.
    Kuwabara T, Cogan DG (1963) Retinal vascular ­patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol 69:492–502PubMedGoogle Scholar
  124. 124.
    Laties AM (1967) Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol 77:405–409PubMedGoogle Scholar
  125. 125.
    Li M, Zhao MQ, Kumar Durairajan SS et al (2008) Protective effect of tetramethylpyrazine and salvianolic acid B on apoptosis of rat cerebral microvascular endothelial cell under high shear stress. Clin Hemorheol Microcirc 38:177–187PubMedGoogle Scholar
  126. 126.
    Lin WL, Essner E (1990) Immunogold localization of basement membrane molecules in rat retinal ­capillaries. Cell Mol Biol 36:13–21PubMedGoogle Scholar
  127. 127.
    Lindblom P, Gerhardt H, Liebner S et al (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17:1835–1840PubMedGoogle Scholar
  128. 128.
    Linsenmeier RA, Braun RD, McRipley MA et al (1998) Retinal hypoxia in long-term diabetic cats. Invest Ophthalmol Vis Sci 39:1647–1657PubMedGoogle Scholar
  129. 129.
    Linskens MH, Harley CB, West MD, Campisi J, Hayflick L (1995) Replicative senescence and cell death. Science 267:17PubMedGoogle Scholar
  130. 130.
    Lip PL, Belgore F, Blann AD, Hope-Ross MW, Gibson JM, Lip GY (2000) Plasma VEGF and soluble VEGF receptor FLT-1 in proliferative retinopathy: relationship to endothelial dysfunction and laser treatment. Invest Ophthalmol Vis Sci 41:2115–2119PubMedGoogle Scholar
  131. 131.
    Ljubimov AV, Burgeson RE, Butkowski RJ et al (1996) Basement membrane abnormalities in human eyes with diabetic retinopathy. J Histochem Cytochem 44:1469–1479PubMedGoogle Scholar
  132. 132.
    Lopes de Faria JM, Jalkh AE, Trempe CL, McMeel JW (1999) Diabetic macular edema: risk factors and concomitants. Acta Ophthalmol Scand 77:170–175PubMedGoogle Scholar
  133. 133.
    Lorenzi M, Feke GT, Cagliero E et al (2008) Retinal haemodynamics in individuals with well-controlled type 1 diabetes. Diabetologia 51:361–364PubMedGoogle Scholar
  134. 134.
    Matsushita K, Puro DG (2006) Topographical ­heterogeneity of K(IR) currents in pericyte-containing microvessels of the rat retina: effect of diabetes. J Physiol 573:483–495PubMedGoogle Scholar
  135. 135.
    McGahon M, Needham M, Scholfield CN, McGeown JG, Curtis TM (2009) Ca2+-activated Cl current in retinal arteriolar smooth muscle. Invest Ophthalmol Vis Sci 50:364–371PubMedGoogle Scholar
  136. 136.
    McGahon MK, Dash DP, Arora A et al (2007) Diabetes downregulates large-conductance Ca2+-activated potassium beta 1 channel subunit in retinal arteriolar smooth muscle. Circ Res 100:703–711PubMedGoogle Scholar
  137. 137.
    McGahon MK, Dawicki JM, Arora A et al (2007) Kv1.5 is a major component underlying the A-type potassium current in retinal arteriolar smooth muscle. Am J Physiol Heart Circ Physiol 292:H1001–H1008PubMedGoogle Scholar
  138. 138.
    McGahon MK, Zhang X, Scholfield CN, Curtis TM, McGeown JG (2007) Selective downregulation of the BKbeta1 subunit in diabetic arteriolar myocytes. Channels (Austin) 1:141–143Google Scholar
  139. 139.
    Milkiewicz M, Uchida C, Gee E, Fudalewski T, Haas TL (2008) Shear stress-induced Ets-1 modulates protease inhibitor expression in microvascular endothelial cells. J Cell Physiol 217:502–510PubMedGoogle Scholar
  140. 140.
    Miyamoto K, Khosrof S, Bursell SE et al (1999) Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci USA 96:10836–10841PubMedGoogle Scholar
  141. 141.
    Miyamoto K, Ogura Y (1999) Pathogenetic potential of leukocytes in diabetic retinopathy. Semin Ophthalmol 14:233–239PubMedGoogle Scholar
  142. 142.
    Mizutani M, Kern TS, Lorenzi M (1996) Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 97:2883–2890PubMedGoogle Scholar
  143. 143.
    Mott JD, Khalifah RG, Nagase H, Shield CF III, Hudson JK, Hudson BG (1997) Nonenzymatic glycation of type IV collagen and matrix metalloproteinase susceptibility. Kidney Int 52:1302–1312PubMedGoogle Scholar
  144. 144.
    Nagaoka T, Sakamoto T, Mori F, Sato E, Yoshida A (2002) The effect of nitric oxide on retinal blood flow during hypoxia in cats. Invest Ophthalmol Vis Sci 43:3037–3044PubMedGoogle Scholar
  145. 145.
    Nagaoka T, Yoshida A (2006) Noninvasive evaluation of wall shear stress on retinal microcirculation in humans. Invest Ophthalmol Vis Sci 47:1113–1119PubMedGoogle Scholar
  146. 146.
    Nguyen QD, Tatlipinar S, Shah SM et al (2006) Vascular endothelial growth factor is a critical stimulus for diabetic macular edema. Am J Ophthalmol 142:961–969PubMedGoogle Scholar
  147. 147.
    Nicoletti R, Venza I, Ceci G, Visalli M, Teti D, Reibaldi A (2003) Vitreous polyamines spermidine, putrescine, and spermine in human proliferative ­disorders of the retina. Br J Ophthalmol 87:1038–1042PubMedGoogle Scholar
  148. 148.
    Nishijima K, Ng YS, Zhong L et al (2007) Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171:53–67PubMedGoogle Scholar
  149. 149.
    Nishikawa T, Giardino I, Edelstein D, Brownlee M (2000) Changes in diabetic retinal matrix protein mRNA levels in a common transgenic mouse strain. Curr Eye Res 21:581–587PubMedGoogle Scholar
  150. 150.
    Pannarale L, Onori P, Ripani M, Gaudio E (1996) Precapillary patterns and perivascular cells in the retinal microvasculature. A scanning electron microscope study. J Anat 188(Pt 3):693–703PubMedGoogle Scholar
  151. 151.
    Park JY, Takahara N, Gabriele A et al (2000) Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes 49:1239–1248PubMedGoogle Scholar
  152. 152.
    Patel V, Rassam S, Newsom R, Wiek J, Kohner E (1992) Retinal blood flow in diabetic retinopathy. BMJ 305:678–683PubMedGoogle Scholar
  153. 153.
    Patel V, Rassam SM, Chen HC, Kohner EM (1994) Oxygen reactivity in diabetes mellitus: effect of hypertension and hyperglycaemia. Clin Sci (Lond) 86:689–695Google Scholar
  154. 154.
    Pecsvarady Z, Fisher TC, Darwin CH et al (1994) Decreased polymorphonuclear leukocyte deformability in NIDDM. Diabetes Care 17:57–63PubMedGoogle Scholar
  155. 155.
    Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704PubMedGoogle Scholar
  156. 156.
    Pournaras CJ, Rungger-Brandle E, Riva CE, Hardarson SH, Stefansson E (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27:284–330PubMedGoogle Scholar
  157. 157.
    Puro DG (2007) Physiology and pathobiology of the pericyte-containing retinal microvasculature: new developments. Microcirculation 14:1–10PubMedGoogle Scholar
  158. 158.
    Rassam SM, Patel V, Chen HC, Kohner EM (1996) Regional retinal blood flow and vascular autoregulation. Eye 10(Pt 3):331–337PubMedGoogle Scholar
  159. 159.
    Rassam SM, Patel V, Kohner EM (1995) The effect of experimental hypertension on retinal vascular autoregulation in humans: a mechanism for the progression of diabetic retinopathy. Exp Physiol 80:53–68PubMedGoogle Scholar
  160. 160.
    Riva CE, Logean E, Falsini B (2005) Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res 24:183–215PubMedGoogle Scholar
  161. 161.
    Robinson GS, Pierce EA, Rook SL, Foley E, Webb R, Smith LE (1996) Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc Natl Acad Sci USA 93:4851–4856PubMedGoogle Scholar
  162. 162.
    Roy S, Maiello M, Lorenzi M (1994) Increased expression of basement membrane collagen in human diabetic retinopathy. J Clin Invest 93:438–442PubMedGoogle Scholar
  163. 163.
    Schmetterer L, Wolzt M (1999) Ocular blood flow and associated functional deviations in diabetic retinopathy. Diabetologia 42:387–405PubMedGoogle Scholar
  164. 164.
    Scholfield CN, Curtis TM (2000) Heterogeneity in cytosolic calcium regulation among different microvascular smooth muscle cells of the rat retina. Microvasc Res 59:233–242PubMedGoogle Scholar
  165. 165.
    Scholfield CN, McGeown JG, Curtis TM (2007) Cellular physiology of retinal and choroidal arteriolar smooth muscle cells. Microcirculation 14:11–24PubMedGoogle Scholar
  166. 166.
    Sharma NK, Gardiner TA, Archer DB (1985) A morphologic and autoradiographic study of cell death and regeneration in the retinal microvasculature of normal and diabetic rats. Am J Ophthalmol 100:51–60PubMedGoogle Scholar
  167. 167.
    Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL (1993) Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Physiol 265:E783–E793PubMedGoogle Scholar
  168. 168.
    Simo R, Hernandez C (2008) Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy. Diabetologia 51:1574–1580PubMedGoogle Scholar
  169. 169.
    Sinclair SH, Grunwald JE, Riva CE, Braunstein SN, Nichols CW, Schwartz SS (1982) Retinal vascular autoregulation in diabetes mellitus. Ophthalmology 89:748–750PubMedGoogle Scholar
  170. 170.
    Skovborg F, Nielsen AV, Lauritzen E, Hartkopp O (1969) Diameters of the retinal vessels in diabetic and normal subjects. Diabetes 18:292–298PubMedGoogle Scholar
  171. 171.
    Skovborg F, Nielsen AV, Schlichtkrull J, Ditzel J (1966) Blood-viscosity in diabetic patients. Lancet 1:129–131PubMedGoogle Scholar
  172. 172.
    Spaide RF, Fisher YL (2006) Intravitreal bevacizumab (Avastin) treatment of proliferative diabetic retinopathy complicated by vitreous hemorrhage. Retina 26:275–278PubMedGoogle Scholar
  173. 173.
    Stitt AW, Anderson HR, Gardiner TA, Archer DB (1994) Diabetic retinopathy: quantitative variation in capillary basement membrane thickening in arterial or venous environments. Br J Ophthalmol 78:133–137PubMedGoogle Scholar
  174. 174.
    Stitt AW, Gardiner TA, Archer DB (1995) Histological and ultrastructural investigation of ­retinal microaneurysm development in diabetic patients. Br J Ophthalmol 79:362–367PubMedGoogle Scholar
  175. 175.
    Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H (1997) Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol 150:523–531PubMedGoogle Scholar
  176. 176.
    Sundberg C, Kowanetz M, Brown LF, Detmar M, Dvorak HF (2002) Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Invest 82:387–401PubMedGoogle Scholar
  177. 177.
    Takagi C, Bursell SE, Lin YW et al (1996) Regulation of retinal hemodynamics in diabetic rats by increased expression and action of endothelin-1. Invest Ophthalmol Vis Sci 37:2504–2518PubMedGoogle Scholar
  178. 178.
    Takagi C, King GL, Clermont AC, Cummins DR, Takagi H, Bursell SE (1995) Reversal of abnormal retinal hemodynamics in diabetic rats by acarbose, an alpha-glucosidase inhibitor. Curr Eye Res 14:741–749PubMedGoogle Scholar
  179. 179.
    Tang J, Mohr S, Du YD, Kern TS (2003) Non-uniform distribution of lesions and biochemical abnormalities within the retina of diabetic humans. Curr Eye Res 27:7–13PubMedGoogle Scholar
  180. 180.
    Thoumine O, Nerem RM, Girard PR (1995) Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress. Lab Invest 73:565–576PubMedGoogle Scholar
  181. 181.
    Tolentino MJ, McLeod DS, Taomoto M, Otsuji T, Adamis AP, Lutty GA (2002) Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate. Am J Ophthalmol 133:373–385PubMedGoogle Scholar
  182. 182.
    Tong PC, Lee KF, So WY et al (2004) White blood cell count is associated with macro- and microvascular complications in Chinese patients with type 2 diabetes. Diabetes Care 27:216–222PubMedGoogle Scholar
  183. 183.
    Tooke JE (1995) Microvascular function in human diabetes. A physiological perspective. Diabetes 44:721–726PubMedGoogle Scholar
  184. 184.
    Trick GL, Edwards P, Desai U, Berkowitz BA (2006) Early supernormal retinal oxygenation response in patients with diabetes. Invest Ophthalmol Vis Sci 47:1612–1619PubMedGoogle Scholar
  185. 185.
    Uemura A, Ogawa M, Hirashima M et al (2002) Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 110:1619–1628PubMedGoogle Scholar
  186. 186.
    Valone JA Jr, McMeel JW, Franks EP (1981) Unilateral proliferative diabetic retinopathy. I. Initial findings. Arch Ophthalmol 99:1357–1361PubMedGoogle Scholar
  187. 187.
    Wagener HP, Story DTD, Wilder RM (1934) Retinitis in diabetes. N Engl J Med 211:1131–1137Google Scholar
  188. 188.
    Wallow IH, Geldner PS (1980) Endothelial fenestrae in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 19:1176–1183PubMedGoogle Scholar
  189. 189.
    Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121:547–557PubMedGoogle Scholar
  190. 190.
    Williams JM Sr, de Juan E, Jr MR (1988) Ultrastructural characteristics of new vessels in proliferative diabetic retinopathy. Am J Ophthalmol 105:491–499PubMedGoogle Scholar
  191. 191.
    Wolf S, Arend O, Toonen H, Bertram B, Jung F, Reim M (1991) Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results. Ophthalmology 98:996–1000PubMedGoogle Scholar
  192. 192.
    Wong TY, Klein R, Sharrett AR et al (2002) Retinal arteriolar narrowing and risk of diabetes mellitus in middle-aged persons. JAMA 287:2528–2533PubMedGoogle Scholar
  193. 193.
    Wu DM, Kawamura H, Sakagami K, Kobayashi M, Puro DG (2003) Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Heart Circ Physiol 284:H2083–H2090PubMedGoogle Scholar
  194. 194.
    Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL (1994) Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes 43:1122–1129PubMedGoogle Scholar
  195. 195.
    Yamanishi S, Katsumura K, Kobayashi T, Puro DG (2006) Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J Physiol Heart Circ Physiol 290:H925–H934PubMedGoogle Scholar
  196. 196.
    Yanoff M (1966) Diabetic retinopathy. N Engl J Med 274:1344–1349PubMedGoogle Scholar
  197. 197.
    Yokota T, Ma RC, Park JY et al (2003) Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes 52:838–845PubMedGoogle Scholar
  198. 198.
    Yoshida A, Feke GT, Morales-Stoppello J, Collas GD, Goger DG, McMeel JW (1983) Retinal blood flow alterations during progression of diabetic retinopathy. Arch Ophthalmol 101:225–227PubMedGoogle Scholar
  199. 199.
    Zimmet PZ (1999) Diabetes epidemiology as a tool to trigger diabetes research and care. Diabetologia 42:499–518PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Centre for Vision and Vascular Sciences School of Medicine, Dentistry and Biomedical SciencesThe Queen’s University of Belfast, Institute of Clinical Science - Block A, Royal Victoria HospitalBelfastUK
  2. 2.Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical SciencesThe Queen’s University of BelfastBelfastUK

Personalised recommendations