Skip to main content

Local Determinants

  • Chapter
  • First Online:
Ocular Blood Flow

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patterson SW, Starling EH (1914) On the mechanical factors which determine the output of the ventricles. J Physiol 48:357–379

    PubMed  CAS  Google Scholar 

  2. Moses RA (1963) Hydrodynamic model eye. Ophthalmologica 146:137–142

    Article  PubMed  CAS  Google Scholar 

  3. Fry DL, Thomas LJ, Greenfield JC (1980) Flow in collapsible tubes. In: Patel DJ, Vaishnav RN (eds) Basic hemodynamics and its role in disease ­processes. University Park Press, Baltimore, pp 407–424

    Google Scholar 

  4. Maepea O (1992) Pressures in the anterior ciliary arteries, choroidal veins and choriocapillaris. Exp Eye Res 54:731–736

    Article  PubMed  CAS  Google Scholar 

  5. Kiel JW (2011) The Ocular Circulation. In: Granger DN, Granger J (eds) Colloquium Series in Integrated Systems Physiology: from Molecule to function. www.morganclaypool.com, pp 1-68

    Article  PubMed  CAS  Google Scholar 

  6. Kiel JW, van Heuven WAJ (1995) Ocular perfusion pressure and choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 36:579–585

    PubMed  CAS  Google Scholar 

  7. Baylis WM (1902) On the local reactions of the arterial wall to changes of internal pressure. J Physiol (London) 28:220–231

    Google Scholar 

  8. Hein TW, Rosa RH, Yuan Z, Roberts E, Kuo L (2010) Divergent roles of nitric oxide and Rho kinase in vasomotor regulation of human retinal arterioles. Invest Ophthalmol Vis Sci 51(3):1583–1590

    Article  PubMed  Google Scholar 

  9. Davis MJ, Sikes PJ (1990) Myogenic responses of isolated arterioles: test for a rate-sensitive mechanism. Am J Physiol 259:H1890–H1900

    PubMed  CAS  Google Scholar 

  10. Falcone JC, Davis MJ, Meininger GA (1991) Endothelial independence of myogenic response in isolated skeletal muscle arterioles. Am J Physiol 260:H130–H135

    PubMed  CAS  Google Scholar 

  11. Loutzenhiser R, Bidani A, Chilton L (2002) Renal myogenic response: kinetic attributes and physiological role. Circ Res 90:1316–1324

    Article  PubMed  CAS  Google Scholar 

  12. Meininger GA, Mack CA, Fehr KL, Bohlen HG (1987) Myogenic vasoregulation overrides local metabolic control in resting rat skeletal muscle. Circ Res 60:861–870

    Article  PubMed  CAS  Google Scholar 

  13. Johnson PC (1980) The myogenic response. In: Bohr D, Somlyo A, Sparks H, Geiger S (eds) Handbook of physiology: the cardiovascular system. American Physiological Society, Bethesda, pp 409–442

    Google Scholar 

  14. Rubanyi GM (1993) Mechanoreception by the vascular wall. Futura Publishing Co, Mount Kisco

    Google Scholar 

  15. Wiederhielm CA, Bouskela E, Heald R, Black L (1979) A method for varying arterial and venous pressures in intact, unanesthetized mammals. Microvasc Res 18:124–128

    Article  PubMed  CAS  Google Scholar 

  16. Johnson PC, Intaglietta M (1976) Contributions of pressure and flow sensitivity to autoregulation in mesenteric arterioles. Am J Physiol 231:1686–1698

    PubMed  CAS  Google Scholar 

  17. Gaskell WH (1877) On the changes of the blood stream through stimulation of their nerves. J Anat 11:360–404

    CAS  Google Scholar 

  18. Granger HJ, Goodman AH, Granger DN (1973) Intrinsic metabolic regulation of blood flow, O2 extraction and tissue O2 delivery in dog skeletal muscle. Adv Exp Med Biol 37A:451–456

    PubMed  CAS  Google Scholar 

  19. Granger HJ, Shepherd AP (1973) Intrinsic microvascular control of tissue oxygen delivery. Microvasc Res 5:49–72

    Article  PubMed  CAS  Google Scholar 

  20. Gidday JM, Esther JW, Ely SW, Rubio R, Berne RM (1990) Time-dependent effects of theophylline on myocardial reactive hyperaemias in the anaesthetized dog. Br J Pharmacol 100:95–101

    Article  PubMed  CAS  Google Scholar 

  21. Valleau JD, Granger DN, Taylor AE (1979) Effect of solute-coupled volume absorption on oxygen consumption in cat ileum. Am J Physiol 236:E198–E203

    PubMed  CAS  Google Scholar 

  22. Kiel JW, Riedel GL, Shepherd AP (1987) Local control of canine gastric mucosal blood flow. Gastroenterology 93: 1041–1053

    PubMed  CAS  Google Scholar 

  23. Granger HJ, Goodman AH, Granger DN (1976) Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog. Circ Res 38:379–385

    Article  PubMed  CAS  Google Scholar 

  24. Schretzenmayr A (1933) Über kreislaufregulatorische Vorgänge an den grossen Arterien bei der Muskelarbeit. Pfluegers Arch Ges Physiol 232:743–748

    Article  Google Scholar 

  25. Lie M, Sejersted OM, Kiil F (1970) Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs. Circ Res 27:727–737

    Article  PubMed  CAS  Google Scholar 

  26. Hilton SM (1959) A peripheral arterial conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasodilatation in skeletal muscle. J Physiol 149:93–111

    PubMed  CAS  Google Scholar 

  27. Holtz J, Forstermann U, Pohl U, Giesler M, Bassenge E (1984) Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 6:1161–1169

    PubMed  CAS  Google Scholar 

  28. Kuo L, Davis MJ, Chilian WM (1990) Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol 259:H1063–H1070

    PubMed  CAS  Google Scholar 

  29. Koller A, Sun D, Kaley G (1993) Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ Res 72:1276–1284

    Article  PubMed  CAS  Google Scholar 

  30. Stepp DW, Nishikawa Y, Chilian WM (1999) Regulation of shear stress in the canine coronary microcirculation. Circulation 100:1555–1561

    Article  PubMed  CAS  Google Scholar 

  31. Figueroa XF, Duling BR (2009) Gap junctions in the control of vascular function. Antioxid Redox Signal 11:251–266

    Article  PubMed  CAS  Google Scholar 

  32. Segal SS, Duling BR (1986) Flow control among microvessels coordinated by intercellular conduction. Science 234:868–870

    Article  PubMed  CAS  Google Scholar 

  33. Dora KA, Xia J, Duling BR (2003) Endothelial cell signaling during conducted vasomotor responses. Am J Physiol Heart Circ Physiol 285:H119–H126

    PubMed  CAS  Google Scholar 

  34. Geijer C, Bill A (1979) Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci 18:1030–1042

    PubMed  CAS  Google Scholar 

  35. Weinstein JM, Duckrow RB, Beard D, Brennan RW (1983) Regional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci 24:1559–1565

    PubMed  CAS  Google Scholar 

  36. Shonat RD, Wilson DF, Riva CE, Cranstoun SD (1992) Effect of acute increases in intraocular pressure on intravascular optic nerve head oxygen tension in cats. Invest Ophthalmol Vis Sci 33:3174–3180

    PubMed  CAS  Google Scholar 

  37. Liang Y, Downs JC, Fortune B et al (2009) Impact of systemic blood pressure on the relationship between intraocular pressure and blood flow in the optic nerve head of nonhuman primates. Invest Ophthalmol Vis Sci 50:2154–2160

    Article  PubMed  Google Scholar 

  38. Riva CE, Logean E, Falsini B (2005) Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res 24:183–215

    Article  PubMed  Google Scholar 

  39. Buerk DG, Riva CE, Cranstoun SD (1995) Frequency and luminance-dependent blood flow and K+ ion changes during flicker stimuli in cat optic nerve head. Invest Ophthalmol Vis Sci 36:2216–2227

    PubMed  CAS  Google Scholar 

  40. Buerk DG, Riva CE (2002) Adenosine enhances functional activation of blood flow in cat optic nerve head during photic stimulation independently from nitric oxide. Microvasc Res 64:254–264

    Article  PubMed  CAS  Google Scholar 

  41. Riva CE, Cranstoun SD, Petrig BL (1996) Effect of decreased ocular perfusion pressure on blood flow and the flicker-induced flow response in the cat optic nerve head. Microvasc Res 52:258–269

    Article  PubMed  CAS  Google Scholar 

  42. Riva CE, Harino S, Petrig BL, Shonat RD (1992) Laser Doppler flowmetry in the optic nerve. Exp Eye Res 55:499–506

    Article  PubMed  CAS  Google Scholar 

  43. Riva CE, Hero M, Titze P, Petrig B (1997) Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefes Arch Clin Exp Ophthalmol 235:618–626

    Article  PubMed  CAS  Google Scholar 

  44. Buerk DG, Riva CE, Cranstoun SD (1996) Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli. Microvasc Res 52:13–26

    Article  PubMed  CAS  Google Scholar 

  45. Takayama J, Tomidokoro A, Tamaki Y, Araie M (2005) Time course of changes in optic nerve head circulation after acute reduction in intraocular pressure. Invest Ophthalmol Vis Sci 46:1409–1419

    Article  PubMed  Google Scholar 

  46. Takayama J, Tomidokoro A, Ishii K et al (2003) Time course of the change in optic nerve head circulation after an acute increase in intraocular pressure. Invest Ophthalmol Vis Sci 44:3977–3985

    Article  PubMed  Google Scholar 

  47. O’Day DM, Fish MB, Aronson SB, Coon A, Pollycove M (1971) Ocular blood flow measurement by nuclide labeled microspheres. Arch Ophthalmol 86:205–209

    Article  PubMed  Google Scholar 

  48. Alm A, Bill A (1972) The oxygen supply to the retina, II. Effects of high intraocular pressure of increased arterial carbon dioxide tension on uveal & retinal blood flow in cats. Acta Physiol Scand 84:306–319

    Article  PubMed  CAS  Google Scholar 

  49. Weiter JJ, Schachar A, Ernest JT (1973) Control of intraocular blood flow. I. Intraocular pressure. Invest Ophthalmol 12:327–334

    PubMed  CAS  Google Scholar 

  50. Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (macaca irus): a study with radioactively labeled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29

    Article  PubMed  CAS  Google Scholar 

  51. Kiel JW, Shepherd AP (1992) Autoregulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 33:2399–2410

    PubMed  CAS  Google Scholar 

  52. Kiel JW (1999) Modulation of choroidal autoregulation in the rabbit. Exp Eye Res 69:413–429

    Article  PubMed  CAS  Google Scholar 

  53. Kiel JW, Lovell MO (1996) Adrenergic modulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 37:673–679

    PubMed  CAS  Google Scholar 

  54. Riva CE, Cranstoun SD, Mann RM, Barnes GE (1994) Local choroidal blood flow in the cat by laser Doppler flowmetry. Invest Ophthalmol Vis Sci 35:608–618

    PubMed  CAS  Google Scholar 

  55. Wang L, Grant C, Fortune B, Cioffi GA (2008) Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique. Exp Eye Res 86:908–913

    Article  PubMed  CAS  Google Scholar 

  56. Roth S (1995) Post-ischemic hyperemia in the cat retina: the effects of adenosine receptor blockade. Curr Eye Res 14:323–328

    Article  PubMed  CAS  Google Scholar 

  57. Kiel JW (1994) Choroidal myogenic autoregulation and intraocular pressure. Exp Eye Res 58:529–544

    Article  PubMed  CAS  Google Scholar 

  58. Bill A, Linder M, Linder J (1977) The protective role of ocular sympathetic vasomotor nerves in acute arterial hypertension. Bibl Anat 16:30–35

    PubMed  Google Scholar 

  59. Parver LM, Auker C, Carpenter DO (1980) Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol 89:641–646

    PubMed  CAS  Google Scholar 

  60. Nielsen B, Savard G, Richter EA, Hargreaves M, Saltin B (1990) Muscle blood flow and muscle metabolism during exercise and heat stress. J Appl Physiol 69:1040–1046

    PubMed  CAS  Google Scholar 

  61. Parver LM, Auker CR, Carpenter DO, Doyle T (1982) Choroidal blood flow II. Reflexive control in the monkey. Arch Ophthalmol 100:1327–1330

    Article  PubMed  CAS  Google Scholar 

  62. Chemtob S, Beharry K, Rex J et al (1991) Ibuprofen enhances retinal and choroidal blood flow autoregulation in newborn piglets. Invest Ophthalmol Vis Sci 32:1799–1807

    PubMed  CAS  Google Scholar 

  63. Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H (1994) Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle ­phenomenon. Invest Ophthalmol Vis Sci 35:3825–3834

    PubMed  CAS  Google Scholar 

  64. Harino S, Nishimura K, Kitanishi K, Suzuki M, Reinach P (1999) Role of nitric oxide in mediating retinal blood flow regulation in cats. J Ocul Pharmacol Ther 15:295–303

    Article  PubMed  CAS  Google Scholar 

  65. Zuckerman R, Weiter JJ (1980) Oxygen transport in the bullfrog retina. Exp Eye Res 30:117–127

    Article  PubMed  CAS  Google Scholar 

  66. Linsenmeier RA, Steinberg RH (1984) Effects of hypoxia on potassium homeostasis and pigment epithelial cells in the cat retina. J Gen Physiol 84:945–970

    Article  PubMed  CAS  Google Scholar 

  67. Linsenmeier RA (1986) Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol 88:521–542

    Article  PubMed  CAS  Google Scholar 

  68. Birol G, Wang S, Budzynski E, Wangsa-Wirawan ND, Linsenmeier RA (2007) Oxygen distribution and consumption in the macaque retina. Am J Physiol Heart Circ Physiol 293:H1696–H1704

    Article  PubMed  CAS  Google Scholar 

  69. Bill A, Sperber GO (1990) Control of retinal and choroidal blood flow. Eye 4:319–325

    Article  PubMed  Google Scholar 

  70. Shakoor A, Blair NP, Mori M, Shahidi M (2006) Chorioretinal vascular oxygen tension changes in response to light flicker. Invest Ophthalmol Vis Sci 47:4962–4965

    Article  PubMed  Google Scholar 

  71. Kiryu J, Asrani S, Shahidi M, Mori M, Zeimer R (1995) Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker. Invest Ophthalmol Vis Sci 36:1240–1246

    PubMed  CAS  Google Scholar 

  72. Nagaoka T, Sakamoto T, Mori F, Sato E, Yoshida A (2002) The effect of nitric oxide on retinal blood flow during hypoxia in cats. Invest Ophthalmol Vis Sci 43:3037–3044

    PubMed  Google Scholar 

  73. Sato E, Sakamoto T, Nagaoka T et al (2003) Role of nitric oxide in regulation of retinal blood flow during hypercapnia in cats. Invest Ophthalmol Vis Sci 44:4947–4953

    Article  PubMed  Google Scholar 

  74. Izumi N, Nagaoka T, Sato E et al (2008) Role of nitric oxide in regulation of retinal blood flow in response to hyperoxia in cats. Invest Ophthalmol Vis Sci 49:4595–4603

    Article  PubMed  Google Scholar 

  75. Stefansson E, Wagner HG, Seida M (1988) Retinal blood flow and its autoregulation measured by intraocular hydrogen clearance. Exp Eye Res 47:669–678

    Article  PubMed  CAS  Google Scholar 

  76. Reitsamer HA, Kiel JW (2003) Relationship between ciliary blood flow and aqueous production in rabbits. Invest Ophthalmol Vis Sci 44:3967–3971

    Article  PubMed  Google Scholar 

  77. Chamot SR, Movaffaghy A, Petrig BL, Riva CE (2000) Iris blood flow response to acute decreases in ocular perfusion pressure: a laser Doppler flowmetry study in humans. Exp Eye Res 70:107–112

    Article  PubMed  CAS  Google Scholar 

  78. Tomidokoro A, Araie M, Tamaki Y, Tomita K (1998) In vivo measurement of iridial circulation using laser speckle phenomenon. Invest Ophthalmol Vis Sci 39:364–371

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Kiel Ph.D., FARVO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kiel, J.W. (2012). Local Determinants. In: Schmetterer, L., Kiel, J. (eds) Ocular Blood Flow. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69469-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69469-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69468-7

  • Online ISBN: 978-3-540-69469-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics