Skip to main content

Fundus Autofluorescence Imaging in Retinal Dystrophies

  • Chapter
  • First Online:
Inherited Chorioretinal Dystrophies

Abstract

The retinal pigment epithelium (RPE) possesses numerous functions which are essential for normal photoreceptor function. The RPE cell monolayer has also been implicated in various degenerative and genetically determined retinal diseases [1, 16, 44, 51]. Given the close anatomic relationship to layers posterior and anterior to the RPE cell monolayer, postmitotic RPE cells are involved in disease processes even if the primary cause originates, e.g., from cells of the neurosensory retina or the choroid. Because of its crucial role in retinal diseases, various attempts have been undertaken to visualize the RPE in the living eye. While fluorescence angiography mainly detects secondary effects such as alterations in the outer blood-retinal barrier, resolution, e.g., of ultrasonography or optical coherence tomography, is insufficient to visualize the cellular elements. Either with confocal scanning laser ophthalmoscopy [46] which was initially developed by Webb and Hughes [50], or with a modified fundus camera [43], it is now possible to record fundus autofluorescence (FAF) and its spatial distribution in vivo. As shown by spectrometric findings by Delori et al. [13], the FAF signal mainly derives from RPE lipofuscin. Therefore, FAF imaging represents a diagnostic, noninvasive tool to evaluate the RPE during aging and in ocular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allikmets R, Shroyer NF, Singh N, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science. 1997;277:1805–7.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson RE, Kretzer FL, Rapp LM. Free radicals and ocular disease. Adv Exp Med Biol. 1994;366:73–86.

    Article  CAS  PubMed  Google Scholar 

  3. Arnold JJ, Sarks SH, Killingsworth MC, Sarks JP. Reticular pseudodrusen. A risk factor in age-related maculopathy. Retina. 1995;15:181–93.

    Article  Google Scholar 

  4. Beatty S, Koh H, Phil M, et al. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000;45:115–34.

    Article  CAS  PubMed  Google Scholar 

  5. Bellmann C, Jorzik J, Spital G, et al. Symmetry of bilateral lesions in geographic atrophy in patients with age-related macular degeneration. Arch Ophthalmol. 2002;120:579–84.

    Article  PubMed  Google Scholar 

  6. Bergmann M, Schutt F, Holz FG, Kopitz J. Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J. 2004;18:562–4.

    CAS  PubMed  Google Scholar 

  7. Bindewald A, Jorzik JJ, Loesch A, et al. Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy. Am J Ophthalmol. 2004;137:556–8.

    Article  PubMed  Google Scholar 

  8. Bindewald A, Schmitz-Valckenberg S, Jorzik JJ, et al. Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration. Br J Ophthalmol. 2006;89:874–8.

    Article  Google Scholar 

  9. Bird AC. Age-related macular disease. Br J Ophthalmol. 1996;80:1–2.

    Article  Google Scholar 

  10. Bressler NM, Bressler SB. Preventative ophthalmology. Age-related macular degeneration. Ophthalmology. 1995;102:1206–11.

    Article  CAS  PubMed  Google Scholar 

  11. Chung JE, Spaide RF. Fundus autofluorescence and vitelliform macular dystrophy. Arch Ophthalmol. 2004;122:1078–9.

    Article  PubMed  Google Scholar 

  12. Davies S, Elliott MH, Floor E, et al. Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic Biol Med. 2001;15:256–65.

    Article  Google Scholar 

  13. Delori FC, Dorey CK, Staurenghi G, et al. In vivo fluorescence of the ocular fundus exhibits RPE lipofuscin characteristics. Invest Ophthalmol Vis Sci. 1995;36:718–29.

    CAS  PubMed  Google Scholar 

  14. Delori FC, Fleckner MR, Goger DG, et al. Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2000;41:496–504.

    CAS  PubMed  Google Scholar 

  15. Delori FC, Staurenghi G, Arend O, et al. In vivo measurement of lipofuscin in Stargardt’s disease-fundus flavimaculatus. Invest Ophthalmol Vis Sci. 1995;36:2327–31.

    CAS  PubMed  Google Scholar 

  16. Eagle RC, Lucier AC, Bernadino VB, Janoff M. Retinal pigment epithelial abnormalities in fundus flavimaculatus; a light and electron microscopical study. Ophthalmology. 1980;87:1189–2000.

    Article  PubMed  Google Scholar 

  17. Eldred GE, Lasky MR. Retinal age-pigments generated by self-assembling lysosomotropic detergents. Nature. 1993;361:724–6.

    Article  CAS  PubMed  Google Scholar 

  18. Feeney-Burns L, Berman ER, Rothman H. Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol. 1980;90:783–91.

    Article  CAS  PubMed  Google Scholar 

  19. Fleckenstein M, Charbel Issa P, Fuchs HA, et al. Discrete arcs of increased fundus autofluorescence in retinal dystrophies and functional correlate on microperimetry. Eye (Lond). 2009;23(3):567–75.

    Google Scholar 

  20. Fleckenstein M, Charbel Issa P, Helb HM, et al. Correlation of lines of increased autofluorescence in macular dystrophy and pigmented paravenous retinochoroidal atrophy by optical coherence tomography. Arch Ophthalmol. 2008;126(10):1461–3

    Google Scholar 

  21. Fleckenstein M, Adrion C, Schmitz-Valckenberg S, et al. Concordance of disease progression in bilateral geographic atrophy due to AMD. FAM Study Group. Invest Ophthalmol Vis Sci. 2010;51(2):637–42.

    Google Scholar 

  22. Frisch IB, Haag P, Steffen H, et al. Kjellin’s syndrome: fundus autofluorescence, angiographic, and electrophysiologic findings. Ophthalmology. 2002;109:1484–91.

    Article  PubMed  Google Scholar 

  23. Holz FG, Bellmann C, Margaritidis M, et al. Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 1999;237:145–52.

    Article  CAS  PubMed  Google Scholar 

  24. Holz FG, Bellmann C, Staudt S, et al. Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2001;42:1051–6.

    CAS  PubMed  Google Scholar 

  25. Holz FG, Schuett F, Kopitz J, et al. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci. 1999;40:737–43.

    CAS  PubMed  Google Scholar 

  26. Holz FG, Bindewald-Wittich A, Fleckenstein M, et al. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol. 2007;143:463–72.

    Article  PubMed  Google Scholar 

  27. Katz ML. Potential role of retinal pigment epithelial lipofuscin accumulation in age-related macular degeneration. Arch Gerontol Geriatr. 2002;34:359–70.

    Article  CAS  PubMed  Google Scholar 

  28. Kennedy CJ, Rakoczy PE, Constable IJ. Lipofuscin of the retinal pigment epithelium: a review. Eye. 1995;9:763–71.

    Article  PubMed  Google Scholar 

  29. Kjellin K. Familial spastic paraplegia with amyotrophy, oligophrenia, and central retinal degeneration. Arch Neurol. 1959;1:133–40.

    Article  CAS  PubMed  Google Scholar 

  30. Klaver CCW, van Leeuwen R, Vingerling JR, De Jong PTVM. Epidemiology of age-related maculopathy. In: Holz FG, Pauleikhoff D, Spaide RF, Bird AC, editors. Age-related macular degeneration. Berlin/Heidelberg/New York: Springer; 2003.

    Google Scholar 

  31. Klein R, Davis MD, Magli YL, Segal P, Klein BE, Hubbard L. The Wisconsin age-related maculopathy grading system. Ophthalmology. 1991;98:1128–34.

    Article  CAS  PubMed  Google Scholar 

  32. Maguire MG, Fine SL. Reticular pseudodrusen. Retina. 1996;16:167–8.

    Article  CAS  PubMed  Google Scholar 

  33. Okubo A, Sameshima M, Unoki K, Uehara F, Bird AC. Ultrastructural changes associated with accumulation of inclusion bodies in rat retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2000;41:4305–12.

    CAS  PubMed  Google Scholar 

  34. Popovic P, Jarc-Vidmar M, Hawlina M. Abnormal fundus autofluorescence in relation to retinal function in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 2005;243:1018–27.

    Article  PubMed  Google Scholar 

  35. Robson AG, Egan CA, Luong VA, et al. Comparison of fundus autofluorescence with photopic and scotopic fine-matrix mapping in patients with retinitis pigmentosa and normal visual acuity. Invest Ophthalmol Vis Sci. 2004;45:4119–25.

    Article  PubMed  Google Scholar 

  36. Robson AG, El-Amir A, Bailey C, et al. Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Invest Ophthalmol Vis Sci. 2003;44:3544–50.

    Article  PubMed  Google Scholar 

  37. Robson AG, Saihan Z, Jenkins SA, et al. Functional characterisation and serial imaging of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Br J Ophthalmol. 2006;90:472–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sanyal S, Hawkins RK. Development and degeneration of retina in rds mutant mice: altered disc shedding pattern in the albino heterozygotes and its relation to light exposure. Vision Res. 1988;28:1171–8.

    Article  CAS  PubMed  Google Scholar 

  39. Saksens NT, Fleckenstein M, Schmitz-Valckenberg S, et al. Macular dystrophies mimicking age-related macular degeneration. Prog Retin Eye Res. 2014;39C:23–57.

    Article  Google Scholar 

  40. Schmitz-Valckenberg S, Jorzik J, Unnebrink K, Holz FG. Analysis of digital scanning laser ophthalmoscopy fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2002;240:73–8.

    Article  PubMed  Google Scholar 

  41. Scholl HP, Chong NH, Robson AG, et al. Fundus autofluorescence in patients with leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2004;45:2747–52.

    Article  PubMed  Google Scholar 

  42. Schutt F, Bergmann M, Holz FG, Kopitz J. Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes. Graefes Arch Clin Exp Ophthalmol. 2002;240:983–8.

    Article  PubMed  Google Scholar 

  43. Schutt F, Bergmann M, Holz FG, Kopitz J. Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2003;44:3663–8.

    Article  PubMed  Google Scholar 

  44. Spaide R. Fundus autofluorescence and age-related macular degeneration. Ophthalmology. 2003;110:392–9.

    Article  PubMed  Google Scholar 

  45. Steinmetz RL, Garner A, Maguire JI, Bird AC. Histopathology of incipient fundus flavimaculatus. Ophthalmology. 1991;98:953–6.

    Article  CAS  PubMed  Google Scholar 

  46. von Ruckmann A, Fitzke FW, Bird AC. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol. 1995;79:407–12.

    Article  Google Scholar 

  47. von Rückmann A, Fitzke FW, Bird AC. Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci. 1997;38:478–86.

    Google Scholar 

  48. von Rückmann A, Fitzke FW, Bird AC. In vivo fundus autoflourescence in macular dystrophies. Arch Ophthalmol. 1997;115:609–15.

    Article  Google Scholar 

  49. von Rückmann A, Fitzke FW, Bird AC. Autofluorescence imaging of the human fundus. In: Marmor MF, Wolfensberger TJ, editors. The retinal pigment epithelium. Oxford: Oxford University Press; 1998. p. 224–34.

    Google Scholar 

  50. Webb RH, Hughes GW. Scanning laser ophthalmoscope. IEEE Trans Biomed Eng. 1981;28:488–92.

    Article  CAS  PubMed  Google Scholar 

  51. Weingeist TA, Kobrin JL, Watz KE. Histopathology of Best’s macular dystrophy. Arch Ophthalmol. 1982;100:1108–14.

    Article  CAS  PubMed  Google Scholar 

  52. Wells J, Wroblewski J, Keen J, et al. Mutations in the human retinal degeneration slow (RDS) gene can cause either retinitis pigmentosa or macular dystrophy. Nat Genet. 1993;3:213–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank G. Holz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fleckenstein, M., Issa, P.C., Holz, F.G. (2014). Fundus Autofluorescence Imaging in Retinal Dystrophies. In: Puech, B., De Laey, JJ., Holder, G. (eds) Inherited Chorioretinal Dystrophies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69466-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69466-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69464-9

  • Online ISBN: 978-3-540-69466-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics