Skip to main content

Sound Absorbers

  • Chapter
  • First Online:
Handbook of Engineering Acoustics

Abstract

Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs HV et al. Schallabsorber und Schalldämpfer. Innovatorium für Maßahmen zur Lärmbekämpfung und Raumakustik; Parts 1–6. Bauphysik, 24(2):102–113, 2002. 24(4):218–277, 2002. 24(5):286–295, 2002.24(6):361–367, 2002. 25(2):80–88, 2003. 25(5):261–270, 2003

    Google Scholar 

  2. Cremer L and Müller HA (1982) Principals and Applications of Room Acoustics, Volume 2. Applied Science, London, New York

    Google Scholar 

  3. Tennhardt HP (1984) In: Fasold et al. (eds) Taschenbuch der Akustik, chapter Messung von Nachhallzeit, Schallabsorptionsgrad und von Materialkennwerten poröser Absorber. Verlag Technik, Berlin

    Google Scholar 

  4. Fasold W, Sonntag E, Winkler H (1987) Bau- und Raumakustik. Verlag für Bauwesen, Berlin

    Google Scholar 

  5. Fasold W, Veres E (2003) Schallschutz und Raumakustik in der Praxis. Verlag für Bauwesen, Berlin

    Google Scholar 

  6. Kuttruff H (2000) Room acoustics. E & F N Spon, London

    Google Scholar 

  7. Cremer L and Müller HA (1982) Principals and Applications of Room Acoustics, Volume 1. Applied Science, London, New York

    Google Scholar 

  8. Zwicker E, Fastl H (1990) Psychoacoustics. Springer, Berlin

    Google Scholar 

  9. Fuchs HV et al (2001) Creating low-noise environments in communication rooms. Appl Acoust 62(12):1375–1396

    Article  Google Scholar 

  10. Drotleff H et al (2004) Acoustic improvements of the working conditions for musicians in orchestra pits. In: Proceedings CFA/DAGA, Strasbourg, 525–526

    Google Scholar 

  11. Drotleff H et al (2004) New room acoustic design concept for rehearsal rooms. In Proceedings CFA/DAGA, Strasbourg, 483–484

    Google Scholar 

  12. Zha X, Fuchs HV, Drotle H (2002) Improving the acoustic working conditions for musicians in small spaces. Appl Acoust 63(2):203–221

    Article  Google Scholar 

  13. Lotze E (2006) In: Schirmer W (ed) Technischer Lärmschutz, chapter Luftschallabsorption. VDIVerlag, Düsseldorf

    Google Scholar 

  14. Frommhold W (1996) Technischer Lärmschutz, chapter Absorptionsschalld ämpfer. VDI-Verlag, Düsseldorf

    Google Scholar 

  15. Möser M (2004) Engineering Acoustics. Springer, Berlin

    Google Scholar 

  16. Mechel FP (1994) In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, chapter Schallabsorption. Springer, Berlin

    Google Scholar 

  17. Künstner R, Potthoff J, Essers U (1995) The aero-acoustic wind tunnel of Stuttgart University. In: SAE Conf., Detroit, Paper 950 625

    Google Scholar 

  18. Pfeiffer G et al (1997) Modern testing techniques in BMW powertrain development – three new special test rigs. ATZ Worldwide 99(7/8):12–15

    Google Scholar 

  19. König N (1993) Schaumgips oder Gipsschaum? Eigenschaften und Einsatzmöglichkeiten eines neuen Baustoffes. Bauphysik 15(2):33–36

    Google Scholar 

  20. Gödeke H, Fuchs HV (1998) REAPOR – Sintered open-pore glass foam as a high-strength sound absorber. Glastech Ber Glass Sci Technol 71(9):282–284

    Google Scholar 

  21. Zimmermann S (2003) Control Performance of Active Absorbers in Enclosed, Harmonic Sound Fields. PhD thesis, Technische Universität Berlin (D83), GCA, Herdecke

    Google Scholar 

  22. Zha X et al (1999) Measurement of an effective absorption coefficient below 100 Hz. Acoust Bull 1/2:5–10

    MathSciNet  Google Scholar 

  23. Fuchs HV, Zha X, Pommerer M (2000) Qualifying freefield and reverberation rooms for frequencies below 100 Hz. Appl Acoust 59(4):303–322

    Article  Google Scholar 

  24. Bies DA, Hansen CH (1996) Engineering Noise Control. E&FN Spon, London

    Google Scholar 

  25. Morse PM, Ingard KU (1968) Theoretical acoustics. McGraw-Hill, New York

    Google Scholar 

  26. DIN 52 212. Bestimmung des Absorptionsgrades im Hallraum, 1961

    Google Scholar 

  27. Cummings A (1992) The effects of a resonator array on the soundeld in a cavity. J Sound Vibr 154(1):25–44

    Article  ADS  MATH  Google Scholar 

  28. Zhou X, Heinz R, Fuchs HV (1998) Zur Berechnung geschichteter Platten- und Lochplatten-Resonatoren. Bauphysik 20(3):87–95

    Google Scholar 

  29. Kiesewetter N (1980) Schallabsorption durch Platten-Resonanzen. Gesundheitsingenieur 101(1):57–62

    Google Scholar 

  30. Ford RD, McCormick MA (1969) Panel sound absorbers. J Sound Vibr 10(3):411–423

    Article  ADS  Google Scholar 

  31. Chladni EEF (1787) Entdeckungen über die Theorie des Klanges. Leipzig

    Google Scholar 

  32. Hurlebaus S, Gaul L, Wang JTS (2001) An exact series solution for calculating the eigenfrequencies of orthotropic plates with completely free boundary. J Sound Vibr 244(5):747–759

    Article  ADS  Google Scholar 

  33. Lord Rayleigh (1945) The Theory of Sound. Dover, New York, 2 edn of 1896 reprinted with corrections

    Google Scholar 

  34. Schirmer W (1996) Technischer Lärmschutz, chapter Schwingungen und Schallabstrahlung von festen Körpern. VDI-Verlag, Düsseldorf

    Google Scholar 

  35. Leistner M and Fuchs HV (2004) Supplementary acoustic measures in the conference centre of the federal ministry of economy and labour. In: Proceedings CFA/DAGA, Strasbourg, 487–488

    Google Scholar 

  36. Zha X et al (2004) Room acoustics for 4 uses – Großes Haus Staatstheater Mainz. In: Proceedings CFA/DAGA, Strasbourg, 523–524

    Google Scholar 

  37. Fuchs HV, Zha X, Drotleff H (2005) Relevance and treatment of the low frequency domain for noise control and acoustic comfort in rooms. ACTA ACUSTICA 91(4):920–928

    Google Scholar 

  38. Drotleff H, Zhou X (2001) Attractive room acoustic design for multipurpose halls. ACTA ACUSTICA 87(4):500–504

    Google Scholar 

  39. Leistner P, Fuchs HV (2001) Schlitzförmige Schallabso-rber. Bauphysik 23(6):333–337

    Google Scholar 

  40. Frommhold W, Fuchs HV, Sheng S (1994) Acoustic performance of membrane absorbers. J Sound Vibr 170(5):621–636

    Article  ADS  Google Scholar 

  41. Hunecke J and Zhou X (1992) VDI Berichte 938, chapter Resonanz- und Dämpfungsmechanismen in Membran-Absorbern, 187–196. VDIVerlag, Düsseldorf

    Google Scholar 

  42. Trochidis A (1982) Körperschalldämpfung mittels Gas- oder Flüssigkeitsschichten. ACTA ACUSTICA 51(4):201–212

    MATH  Google Scholar 

  43. Ackermann U, Fuchs HV (1989) Noise reduction in an exhaust stack of a papermill. Noise Control Eng J 33(2):57–60

    Article  Google Scholar 

  44. Fuchs HV (1993) Sound absorbers for heavily fouling exhaust gas systems. Cement Lime Gypsum ZKG 46B(7):E185–E191

    Google Scholar 

  45. Vér IL (1992) In: Beranek LL, Ver IL (eds) Noise and Vibration Control Engineering, chapter Enclosures and wrappings. Wiley, New York

    Google Scholar 

  46. Teige K, Brandstätt P, Frommhold W (1996) Zur akustischen Anregung kleiner Räume durch Luftauslässe. Zeitschrift für Lärmbekämpfung 43(3):74–83

    Google Scholar 

  47. Fuchs HV (1993) Generation and control of noise in water supply installations, Part 3, Rating and abating procedures. Appl Acoust 39(3):165–190

    Article  Google Scholar 

  48. Galaitsis AG, Vér IL (1992) In: Beranek LL, Ver IL (eds) Noise and Vibration Control Engineering, chapter Passive silencers and lined ducts. Wiley, New York

    Google Scholar 

  49. Munjal M (1987) Acoustics of Ducts and Mufflers. Wiley, New York

    Google Scholar 

  50. Fuchs HV, Eckoldt D, Hemsing J (1999) Alternative sound absorbers for industrial use: Acousticians on the quest for alternative attenuators. VGB Power Tech 79(3):76–78

    Google Scholar 

  51. Leistner P, Meneghin G, Sklenak B (2000) Aktive Schalldämpfer für Raumklimageräte. Heizung Lüftung/Klima Haustechnik 51(7):42–45

    Google Scholar 

  52. Leistner P, Castor F (2000) Aktive Schalldämpfer für Absauganlagen. Luft- und Kältetechnik 36(8):366–368

    Google Scholar 

  53. Lenk A (1977) Elektromechanische Systeme. Systeme mit konzentrierten Parametern, volume 1. Verlag Technik, Berlin

    Google Scholar 

  54. Bay K-H, Krämer MM, and Brandstätt P (2004) Compact silencer for heating systems. In: Proceedings CFA/DAGA, Strasbourg

    Google Scholar 

  55. Krüger J and Leistner P (1998) Wirksamkeit und Stabilität eines neuartigen aktiven Schalldämpfers. ACTA ACUSTICA, 84(4):658–667

    Google Scholar 

  56. Kurtze G (1977) Wirtschaftliche Gestaltung von Schallschluckdecken. VDIZeitschrift 119(24):1193–1197

    Google Scholar 

  57. Maa D-Y (1975) Theory and design of microperforated panel sound absorbing constructions. Scientia Sinica 18(1):55–71 (In Chinese)

    Google Scholar 

  58. Fuchs HV, Zha X (1997) Acrylic-glass sound absorbers in the plenum of the Deutscher Bundestag. Appl Acoust 51(2):211–217

    Article  Google Scholar 

  59. Fuchs HV, Zha X (1995) Einsatz mikro-perforierter Platten als Schallabsorber mit inhärenter Dämpfung. ACTA ACUSTICA 81(2):107–116

    Google Scholar 

  60. Fuchs HV (1997) Metal ceilings for optimum sound absorption. Environ Eng, 10(7)

    Google Scholar 

  61. Fuchs HV (2000) Helmholtz resonators revisited. ACTA ACUSTICA 86(3):581–583

    Google Scholar 

  62. Fuchs HV et al (2001) Raum-Akustik mit System. Glas-Verarbeitung 8(3):59–64

    Google Scholar 

  63. Maa D-Y (1987) Microperforated panel wideband absorbers. Noise Control Eng J 29:77–84

    Article  Google Scholar 

  64. Wack R and Fuchs HV (2004) On the use of micro-perforated sails in assembly rooms. In: Proceedings CFA/DAGA, Strasbourg, pages 485–486

    Google Scholar 

  65. Zha X et al (1998) Microperforated absorbers for noise control in enclosures. Proceedings Euro-Noise, pp 699–704

    Google Scholar 

  66. Fuchs HV, Zha X (2006) Micro-perforated structures as sound absorbers – a review and outlook. ACTA ACUSTICA 92(1):139–146

    Google Scholar 

  67. Leistner P, Hettler S (2004) Sound absorption of microperforated duct systems. HVAC Res 10:265–274

    Article  Google Scholar 

  68. Brandstätt P, Fuchs HV, Roller M (2002) Novel silencers and absorbers for wind tunnels and acoustic test cells. Noise Control Eng J 50(2):41–49

    Article  Google Scholar 

  69. Eckoldt D (1995) Neuartiger Umlenk-Schalldämpfer auf dem Dach. Luft- und Kältetechnik 31(4):188–189

    Google Scholar 

  70. Fuchs HV (2010) Schallabsorber und Schalldðmpfer. Springer, Berlin

    Google Scholar 

  71. Fuchs HV, Zha X, Babuke G (2004) Broadband compact absorbers for anechoic linings. In: Proceedings CFA/DAGA, Strasbourg, pages 955, 956

    Google Scholar 

  72. Eckoldt D, Fuchs HV, Frommhold W (1994) Alternative Schallabsorber für reexionsarme Messräume. Zeitschrift für Lärmbekämpfung 41(6):162–170

    Google Scholar 

  73. Zha X, Fuchs HV, Späh M (1998) Ein neues Konzept für akustische Freifeldräume. Rundfunktechnische Mitteilungen 42(3):81–91

    Google Scholar 

  74. Dreyer W et al (2003) The new Volkswagen Acoustics Centre in Wolfsburg. ATZ Worldwide 105(3):11–15

    Google Scholar 

  75. Fuchs HV (2001) Alternative fibreless absorbers – New tools and materials for noise control and acoustic comfort. ACTA ACUSTICA 87(3):414–422

    Google Scholar 

  76. Eckoldt D, Fuchs HV (1999) Erfahrungen mit in den Schornstein integrierten Schalldämpfern. Zeitschrift für Lärmbekämpfung 46(6):214

    Google Scholar 

  77. Fuchs HV (2002) Innovative sound absorption products – New tools and materials for noise control and acoustic comfort. In: Pandalalai (ed) Recent Research Developments – Sound & Vibration, part 1:203–239. Transworld Research Network, Kerala

    Google Scholar 

  78. Fuchs HV (2012) Applied Acoustics: Concepts, Absorbers, and Silencers for Acoustical Comfort and Noise Control. Springer, Berlin

    Google Scholar 

  79. Fuchs HV (2006) Letter to the editor on ”Simple model for the acoustical design of open-plan offices“. ACTA ACUSTICA 92(1):181

    Google Scholar 

  80. Fuchs HV, Lamprecht J, Zha X (2011) Zur Steigerung der Wirkung passiver Absorber: Schall in Raumkanten schlucken! Gesundheits-Ingenieur 132(5):240–250

    Google Scholar 

  81. Fuchs HV (2001) From advanced acoustic research to novel silencing procedures and innovative sound treatments. ACTA ACUSTICA 87(3):407–413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. V. Fuchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, H.V., Möser, M. (2013). Sound Absorbers. In: Müller, G., Möser, M. (eds) Handbook of Engineering Acoustics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69460-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69460-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24052-5

  • Online ISBN: 978-3-540-69460-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics