Skip to main content

Mechanische Eigenschaften

  • Chapter
  • 13k Accesses

Part of the book series: VDI-Buch ((VDI-BUCH))

Auszug

Bei der Wahl der Legierung und der Halbzeugart für den jeweiligen Anwendungsfall sind neben der Beurteilung der Verarbeitungseigenschaften, wie Verformbarkeit, Schweißbarkeit und Zerspanbarkeit, sowie des Korrosionsverhaltens unter den beabsichtigten Einsatzbedingungen vor allem die Kenntnis der Festigkeits- und Duktilitätseigenschaften von Bedeutung. Die letzteren beiden Eigenschaften bestimmen sowohl die Auslegung des Bauteils als auch das Umformverhalten und das Verhalten unter Mißbrauch und Crash.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 6

  • Abe, Y.; Yoshida, M.: Warm forming of 5182 aluminum alloy sheets into double square sinks. J. Jap. Inst. Light Metals 44 (1994), S. 240–245

    Google Scholar 

  • Abel, A.; Ham, R.K.: The cyclic strain behaviour of crystals of aluminum-4 wt.% copper — I. The Bauschinger effect. Acta Metallurgica, Vol. 14 (1966), S. 1489–1494

    Article  CAS  Google Scholar 

  • Abel, A.; Ham, R.K.: The cyclic strain behaviour of crystals of aluminum-4 wt.% copper — II. Low cycle fatigue. Acta Metallurgica, Vol. 14 (1966), S. 1495–1503

    Article  CAS  Google Scholar 

  • Aegerter, J.; Keller, S.; Wieser, D.: Prüfvorschrift zur Durchführung und Auswertung des Zugversuches für Al-Werkstoffe. Tagung „Werkstoffprüfung 2003“, Bad Neuenahr

    Google Scholar 

  • Agarwal, H.; Gokhale, A.M.; Graham, S.; Horstemeyer, M.F.: Void growth in 6061-aluminum alloy under triaxial stress state. Materials Science and Engineering A341 (2003), S. 35–42

    CAS  Google Scholar 

  • Angermayer, K.: Structural Aluminium Design. Richmond, Va. CPE Corporation, 1992

    Google Scholar 

  • Annon.: Alcoa Aluminum Handbook, Pittsburgh, Pa., Aluminum Company of America, 1962

    Google Scholar 

  • ASTM, E 561-98 Standard Practice for R-curve Determination, Vol. 03-01, ASTM, 1999, pp. 509–521

    Google Scholar 

  • Avery, D.H.; Backofen, W.A.: Fatigue hardening in alloys of low stacking-fault energy. Acta Met., Vol. 11, 1963, pp. 653–661

    Article  Google Scholar 

  • Backofen, W.A.; Turner, I.R.; Avery, D.H.: Superplastizity in an Al-Zn alloy. Trans. ASM 57 (1964), S. 980–990

    Google Scholar 

  • Balasundaram, A.; Gokhale, A.M.; Graham, S.; Horstemeyer, M.F.: Three-dimensional particle cracking damage development in an Al-Mg-base wrought alloy. Materials Science and Engineering A355 (2003), S. 368–383

    Google Scholar 

  • Banabic, D.: Anisotropy of sheet metal. In: Formability of Metallic Materials, ed. D. Banabic, Springer-Verlag, Berlin, 2000

    Google Scholar 

  • Barlat, F.; Lian, J.: Plastic behaviour and stretchability of sheet metals. Part 1: A yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity 5 (1989), S. 51–66

    Article  Google Scholar 

  • Barlat, F.; Maeda, Y.; Chung, K.; Yanagawa, M.; Berm, J.C.; Hayashida, Y.; Lege, D.J.; Matsui, K.; Murtha, S.J.; Hattori, S.; Becker, R.C.; Makosey, S.: Yield function development for aluminum sheets. J. Mech. Phys. Solids 45 (1997), S. 1727–1763

    Article  CAS  Google Scholar 

  • Basinski, Z.S.; Basinski, S.J.: Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Progress in Materials Science, Vol. 36, 1992, S. 89–148

    Article  CAS  Google Scholar 

  • Bathias, C.; Drouillac, L.; Le Francois, P.: How and why the fatigue S-N curve does not approach a horizontal asymptote. International Journal of Fatigue 23 (2001) S. 143–151

    Article  Google Scholar 

  • Bathias, C.: There is no infinite fatigue life in metallic materials. Fat. Fract. Eng. Mat. Struct. 22 (1999), S. 559–565

    Article  CAS  Google Scholar 

  • Benedetti, M.; Bortolamedi, T.; Fontanari, V.; Frendo, F.: Bending fatigue behaviour of differently shot peened Al 6082 T5 alloy. Intern. J. Fatigue 26 (2004), S. 889–897

    Article  CAS  Google Scholar 

  • Blauel, J.G.; Mayville, R.; Lenz, H.W.: Toughness evaluation for a thick weld joint of AlMg4,5Mn. Proc. Second Intern. Conf. on Aluminium Weldments, München, 24.–26. Mai 1982

    Google Scholar 

  • Boller, Chr.; Seeger, T.: Materials data for cyclic loading. Amsterdam: Elsevier Science Publishers B.V., 1987

    Google Scholar 

  • Bomas, H.: Der Einfluß der Abkühlgeschwindigkeit vom Lösungsglühen auf Gefüge und mechanische Eigenschaften von AlMgSi-Legierungen. Tagungsband Internationale Leichtmetalltagung Leoben Wien 1981

    Google Scholar 

  • Børvik, T.; Clausen, A.H.; Eriksson, M.; Berstad, T.; Hopperstad, O.S.; Langseth, M.: Experimental and numerical study on the perforation of AA6005-T6 panels. Intern. J. Impact Engineering 32 (2005), S. 35–64

    Article  Google Scholar 

  • Bridgman P.W.: Studies in large plastic flow and fracture. New York: McGraw-Hill; 1952

    Google Scholar 

  • Bron, F.; Besson, J.; Pineau, A.: Ductile rupture in thin sheets of two grades of 2024 aluminum alloy. Materials Science and Engineering A 380 (2004), S. 356–364

    Article  CAS  Google Scholar 

  • Campbell, J.D.; Ferguson, W.G.: The temperature and strain-rate dependence of the shear strength of mild steel. Phil. Mag. 21 (1970), S. 63–82

    Article  CAS  Google Scholar 

  • Carter, R.D.; Lee, E.W.; Starke, E.A.Jr.; Beevers, C.J.: The effect of microstructure and environment on fatigue crack closure of 7475 aluminum alloy. Metall. Trans. A 15A (1984), S. 555–562

    CAS  Google Scholar 

  • Chan, K.S.: A Microstructure-Based Fatigue-Crack-Initiation Model. Metallurgical and Materials Transactions A, Vol. 34A (2003), S. 43

    Article  CAS  Google Scholar 

  • Cheng, L.M.; Poole, W.J.; Embury J.D.; Lloyd, D.J.: The Influence of Precipitation on the Work-Hardening Behavior of the Aluminum Alloys AA6111 and AA7030. Metall. Mater. Trans. A Vol. 34A, (2003) S. 2473–2481

    Article  CAS  Google Scholar 

  • Chicois, J.; Fougeres, R.; Guichon, G.; Hamel, A.; Vincent, A.: Mobilite des dislocations lors de la sollicitation cyclique de l’aluminium polycristallin. Acta Metallurgica, Vol. 34, (1986), S. 2157–2170

    Article  Google Scholar 

  • Clark, J.B.; McEvily A.J.: Interaction of dislocations and structures in cyclically strained aluminum alloys. Acta Metallurgica, Vol. 12 (1964), S. 1359–1372

    Article  CAS  Google Scholar 

  • Clausen, A.H.; Børvik, T.; Hopperstad, O.S.; Benallal, A.: Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Materials Science and Engineering A364 (2004) S. 260–272

    CAS  Google Scholar 

  • Coffin, L.F.Jr.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76 (1954), S. 931–950

    CAS  Google Scholar 

  • Considère, A.G.: Memoire sur l’emploi du fer et de l’acier dans les constructions. Annales des Ponts et Chausses (ser. 6) 9 (1885), S. 574–775

    Google Scholar 

  • Déprés, C.; Robertson, C.F.; Fivel, M.C.: Crack initiation in fatigue: experiments and three-dimensional dislocation simulations. Materials Science and Engineering A 387–389 (2004) 288–291

    Article  CAS  Google Scholar 

  • Deschamps A, Peron S, Brechet Y, Ehestrom J-C, Poizat L.: High temperature cleavage fracture in 5383 aluminum alloy. Mater. Sci. Eng. A Vol. 319–321 (2001), S. 583–586

    Google Scholar 

  • Deschamps, A.; Niewczas, M.; Bley, F.; Brechet, Y.; Embury, J.D.; Lesinq, L.; Livet, F.; Simon, J.P.: Low-temperature dynamic precipitation in a super-saturated Al-Zn-Mg alloy and related strain hardening. Philosophical Magazine A Vol. 79 Nr. 10 (1999), S. 2485–2504

    CAS  Google Scholar 

  • Develay, R.: Criteria for the testing and selection of high-strength aluminium alloy for the aircraft industry. Metals and Materials, 6 (1972), S. 404–410

    Google Scholar 

  • Dieter, G.E. Jr.: Mechanical Metallurgy. New York: McGraw-Hill Book Co. Ltd, 1961

    Google Scholar 

  • Doege, E.; Meyer-Nolkemper, H. Saeed, I.: Fließkurvenatlas metallischer Werkstoffe. München: Hanser-Verlag (1986)

    Google Scholar 

  • Dumont, D.; Deschamps, A.; Brechet, Y.: A model for predicting fracture mode and toughness in 7000 series aluminium alloys. Acta Materialia 52 (2004), S. 2529–2540

    Article  CAS  Google Scholar 

  • Dumont, D.; Deschamps, A.; Brechet, Y.: On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy. Materials Science and Engineering A356 (2003), S. 326–336

    CAS  Google Scholar 

  • Durham, R.J.: Mechanische Eigenschaften von Aluminiumlegierungen für den Transport von Flüssiggas bei tiefen Temperaturen. Aluminium 37 (1961), S. 792–801

    Google Scholar 

  • Duva, J.M.; Daeubler, M.A.; Starke, E.A. Jr.; Lütjering, G.: Large shearable particles lead to coarse slip in particle reinforced alloys. Acta Metallurgica, Vol. 36 (1988), S. 585–589

    Article  CAS  Google Scholar 

  • Egger, W.; Kögel, G.; Sperr, P.; Triftshäuser, W.; Bär, J.; Rödling, S.; Gudladt, H.-J.: Measurements of defect structures of a cyclically deformed Al-Mg-Si alloy by positron annihilation techniques. Materials Science and Engineering A, Vol. 387–389 (2004), S. 317–320

    Article  CAS  Google Scholar 

  • El-Madhoun, Y.; Mohamed, A.; Bassim, M.N.: Cyclic stress-strain response and dislocation structures in polycrystalline aluminum. Materials and Engineering A359 (2003), S. 220–227

    Article  CAS  Google Scholar 

  • El-Magd, E., Gese, H.; Tham, R.; Hooputra, H.; Werner, H.: Fracture criteria for automobile crashworthiness simulation of wrought aluminium alloy components. Mat.-wiss. u. Werkstofftech. 32 (2001), S. 712–724

    Article  CAS  Google Scholar 

  • El-Magd, E.; Brodmann, M.: Influence of precipitates on ductile fracture of aluminium alloy AA7075 at high strain rates. Materials Science and Engineering A307 (2001), S. 143–150

    CAS  Google Scholar 

  • Endo, T.; Morrow, JD.: Cyclic stress-strain and fatigue behaviour of representataive aircraft mateals. J. of Materials 4 (1969), S. 159–175

    Google Scholar 

  • Engström, H.; Sandström, R.: Evaluation of high temperature strength values of aluminium alloys. Aluminium 69 (1993, S. 1007–1013

    Google Scholar 

  • Eßmann, U.; Differt, K.: Dynamic model of the wall structure in persistent slip bands of fatigued metals II. The wall spacing and the temperature dependence of the yield stress in saturation. Materials Science and Engineering A, Vol. 208 (1996), S. 56–68

    Article  Google Scholar 

  • Eurocode 9: Bemessung und Konstruktion von Aluminiumtragwerken — Teil 1-2: Tragwerksbemessung für den Brandfall, prEN 1999-1-2, 2004

    Google Scholar 

  • Fonte, M.A.; Stanzl-Tschegg, S.E.; Holper, B.; Tschegg, E.K.; Vasudevan, A.K.: The microstructure and environment influence on fatigue crack growth in 7049 aluminum alloy at different load ratios. International Journal of Fatigue 23 (2001), S. S311–S317

    Article  CAS  Google Scholar 

  • Forsyth, P.J.E.: A two stage process of fatigue crack growth. In: Proc. of the Crack Propagation Symposium, Cranfield, 1961, Vol. 1, Cranfield, Beds. (College of Aeronautics), 1962

    Google Scholar 

  • Forsyth, P.J.E.: Fatigue damage and crack growth in aluminium alloys. Acta Met. 11 (1963), S. 703–715

    Article  Google Scholar 

  • Franciosi, P.; Maire, E.; Vincent, A.; Grenier, J.C.; Daniel, D.: Modelling particle-induced damage during forming of aluminium alloys. Aluminium 80 (2004), S. 724–728

    CAS  Google Scholar 

  • Gao, Y.X.; Ji, J.Z.; Lee, P.D.; Lindley, T.C.: The effect of porosity on fatigue life of cast aluminium-silicon alloys. Fatifue Fract. Eng. Mater. Struct. 27 (2004), S. 559–570

    Article  CAS  Google Scholar 

  • Gilat, A.; Cheng, C-S.: Modeling torsional split Hopkinson bar tests at strain rates above 10,000 s-1. International Journal of Plasticity 18 (2002), S. 787–799

    Article  CAS  Google Scholar 

  • Goodwin, G.M.: Application of strain analysis to sheet metal forming in the press shop. SAE paper No. 680093, 1968

    Google Scholar 

  • Green, D.E.; Neale, K.W.; MacEwen, S.R.; Makinde, A.; Perrin, R.: Experimental investigation of the biaxial behaviour of an aluminum sheet. International J. Plasticity 20 (2004), S. 1677–1706

    Article  CAS  Google Scholar 

  • Green, S.J.; Maiden, C.J.; Babcock, S.G.; Schierloh, F.L.: The high strain-rate behavior of face-centered cubic metals. In: Kanninen, M.F.; Adler, W.F.; Rosenfield, A.R.; Jaffee, R.I.: Inelastic behavior of solids. New York: McGraw-Hill Book Co. Inc., 1970, S. 521–542

    Google Scholar 

  • Grosskreutz, J.C.; Shaw, G.G.: Critical mechanisms in the development of fatigue cracks in 2024-T4 aluminum. In: 2nd Int. Conf. on Fracture 1969, ed. Pratt, P.L., London: Chapman and Hall, Ltd. (1969), S. 620–629

    Google Scholar 

  • Grubisic, V.; Lowak, H.: Fatigue life prediction and test results of aluminum alloy components. Int. Conf. “Fatigue Prevention and Design”, Amsterdam 1986

    Google Scholar 

  • Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Pt. I — Yield criteria and flow rules for porous ductile media. J. Eng. Mat. and Techn., Trans ASME (1977), S. 2–15

    Google Scholar 

  • Haasen, P.: Physikalische Metallkunde, 3. Auflage, Berlin, Heidelberg, New York: Springer-Verlag, 1994

    Google Scholar 

  • Halliday, M.D.; Cooper, M.D.; Poole, C.; Bowen, P.: On predicting small fatigue crack growth and fatigue life from long crack data in 2024 aluminium alloy. International Journal of Fatigue 25 (2003) 709–718

    Article  CAS  Google Scholar 

  • Han, H.N.; Kim, K.-H.: A ductile fracture criterion in sheet metal forming process. Journal of Materials Processing Technology 142 (2003), S. 231–238

    Article  CAS  Google Scholar 

  • Hänel, B., Hanel, W., Wegert, C.: Festigkeitsnachweis Aluminium. Richtlinie Rechnerischer Festigkeitsnachweis für Bauteile aus Aluminium. Forschungsheft 241 (1999), Forschungskuratorium Maschinenbau e.V. (FKM), Frankfurt: VDMA-Verlag

    Google Scholar 

  • Havner, K.S.: On the onset of necking in the tensile test. Intern. J. Plasticity 20 (2004) S. 965–978

    Article  Google Scholar 

  • Heller, C.; Schmoeckel, D.: Umformen von Aluminiumblechen bei erhöhten Temperaturen. Aluminium 64 (1988), S. 398–405

    CAS  Google Scholar 

  • Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. Royal Soc. London A193 (1948), S. 281–297

    CAS  Google Scholar 

  • Hill, R.: Constitutive modelling of orthotropic plasticity in sheet metals. J. Mechanics and Physics of Solids 38 (1990), S. 405–417

    Article  Google Scholar 

  • Hill, R.: The Mathematical Theory of Plasticity. Oxford, Clarendon Press, 1950

    Google Scholar 

  • Hirsch, T.; Vöhringer, O.; Macherauch, E.: Bending fatigue behaviour of differently heat teated and shot peened AlCu5Mg2. Proc. 2nd Intern. Conf. On Shot Peening, Chicago 1984, S. 90–101

    Google Scholar 

  • Hooputra, H.; Gese, H.; Dell, H.; Werner, H.: A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int. J. Crash 9 (2004), S. 449–463

    Article  Google Scholar 

  • Hopperstad, O.; Langseth, M. (University of Science and Technology, Trondheim): CFS for anisotropic materials. EAA Projekt “General Test Procedures”, European Aluminium Association, Brüssel, 2003

    Google Scholar 

  • Hornbogen, E.; Zum Gahr, K. H.: Microstructure and Fatigue. Crack Growth in a □-Fe-Ni-Al Alloy. Acta Met. 24 (1976), S. 581–587

    Article  CAS  Google Scholar 

  • Jain, M.; Allin, J.; Lloyd, D.J.: Fracture limit prediction using ductile fracture criteria for forming an automotive aluminum sheet, Int. J. Mech. Sci. 41 (1999), S. 1273–1288

    Article  Google Scholar 

  • Jiang, D.; Wang, C.: Influence of microstructure on deformation behavior and fracture mode of Al-Mg-Si alloys. Materials Science and Engineering A352 (2003), S. 29–33

    CAS  Google Scholar 

  • Jiang, D.M.; Wang, C.L.; Yu, J.; Gao, Z.Z.; Shao, Y.T.; Hu, Z.M.: Cleavage and intergranular fracture in Al-Mg alloys. Scripta Materialia 49 (2003), S. 387–392

    Article  CAS  Google Scholar 

  • Juijerm, P.; Noster, U.; Altenberger I.: Scholtes B.: Fatigue of deep rolled AlMg 4.5Mn (AA5083) in the temperature range 20–300°C. Materials Science and Engineering A, Volume 379 (2004), S. 286–292

    Article  CAS  Google Scholar 

  • Kammer, C. (Hrg.): Aluminium-Taschenbuch, 16. Aufl., Düsseldorf: Aluminium-Verlag, 2002

    Google Scholar 

  • Kammer, C. (Hrg.): Aluminium-Taschenbuch, Band 2: Umformen, Gießen, Oberflächenbehandlung, Recycling. 15. Aufl., Düsseldorf: Aluminium-Verlag, 1996

    Google Scholar 

  • Karnes, C.H.; Ripperger, E. A.: Strain rate effects in cold worked high-purity Aluminium. J. Mechanics and Physics of Solids, 14 (1966), S. 75–88

    Article  CAS  Google Scholar 

  • Kaschner, G.C.; Gibeling, J.C.: A study of the mechanisms of cyclic deformation in f.c.c. metals using strain rate change tests. Materials Science and Engineering A336 (2002) S. 170–176

    CAS  Google Scholar 

  • Kassem, M.A.: Determination of fracture toughness at subzero temperatures. Aluminium 50 (1974), S. 449–453

    CAS  Google Scholar 

  • Kassner, M. E.; Pérez-Prado, M.-T.: Five-power-law creep in single phase metals and alloys. Progress in Materials Science, Vol. 45 (2000), S. 1–102

    Article  CAS  Google Scholar 

  • Kaufman, J.G. (Ed.): Properties of aluminum alloys: tensile, creep and fatigue data at high and low temperatures; 1999, Materials Park, OH, ASM International

    Google Scholar 

  • Kaufman, J.G.; Holt, M.: Bruchverhalten von Aluminiumlegierungen. Aluminium 46 (1970), S. 103–115

    Google Scholar 

  • Keeler, S.P.; Backofen, W.A.: Plastic instability and fracture in sheet stretched over rigid punches. ASM Transactions Quarterly 56 (1964), S. 25–48

    Google Scholar 

  • Kim, K.C.; Nam, S.W.: Effects of Mn-dispersoids on the fatigue mechanism in an Al-Zn-Mg alloy. Materials Science and Engineering A244 (1998) 257–262

    CAS  Google Scholar 

  • Kitagawa, H.; Takahashi, S.: Applicability of fracture mechanics to very small cracks or cracks in the early stage. In: The Second International Conference on Mechanical Behaviour of Materials, ICM2. Ohio: ASM Metal Park; 1976, S. 627–631

    Google Scholar 

  • Knott, J.F.: Fundamentals of fracture mechanics. London: Butterworth (1973)

    Google Scholar 

  • Korbel, A.; Embury, J.D.; Hatherly, M.; Martin, P.L.; Erbslöh, H.W.: Microstructural aspects of strain localisation in Al-Mg alloys. Acta Metall. 34 (1986), S. 1999–2009

    Article  CAS  Google Scholar 

  • Korbel, A.; Martin, P.: Microscopic versus macroscopic aspect of shear bands deformation. Acta Metall. 34 (1986), S. 1905–1909

    Article  CAS  Google Scholar 

  • Kosteas, D.; Ondra, R.: Imperfektionen in Aluminium-Schweißverbindungen — Einfluß auf die Betriebsfestigkeit. VDI-Bericht Nr. 770 (1989), S. 43–75

    Google Scholar 

  • Lados, D.A.; Apelian, D.; Donald, J.K.: Fatigue crack growth mechanisms at the microstructure scale in Al-Si-Mg cast alloys: Mechanisms in the near-threshold regime. Acta Materialia 54 (2006), S. 1475–1486

    Article  CAS  Google Scholar 

  • Laird, C.: The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: Fatigue Crack Propagation, ASTM STP 415, American Society for Testing Materials, 1967, S. 131–180

    Google Scholar 

  • Laird, C.; Krause, A.R.: The long-life cyclic stress-strain response and fatigue behavior of a planar slip material. In: Kanninen, M.F.; Adler, W.F.; Rosenfield, A.R.; Jaffee, R.I.: Inelastic behavior of solids. New York: McGraw-Hill Book Co. Inc., 1970, S. 691–715

    Google Scholar 

  • Landgraf, R.W.; Morrow, J.; Endo, T.: Determination of the cyclic stress-strain curve. J. of Materials 4 (1969), S. 176–188

    Google Scholar 

  • Lee, W.-S.; Sue, W.-C; Lin, C.-F.; Wu, C.-J.: The strain rate and temperature dependence of the dynamic impact properties of 7075 aluminum alloy. Journal of Materials Processing Technology 100 (2000), S. 116–122

    Article  Google Scholar 

  • Li, D.; Ghosh, A.: Tensile deformation behavior of aluminum alloys at warm forming temperatures. Materials Science and Engineering A352 (2003), S. 279–286

    CAS  Google Scholar 

  • Lin, C.-K.; Sheng-Tseng, Y.: Corrosion fatigue behavior of 7050 aluminum alloys in different tempers. Eng. Fract. Mech. Vol. 59 (1998), S. 779–795

    Article  Google Scholar 

  • Lindigkeit, J.; Terlinde, G.; Gysler, A.; Lütjering, G.: The effect of grain size on the fatigue crack propagation behavior of age-hardened alloys in inert and corrosive environment. Acta Met. 27 (1979), S. 1717–1726

    Article  CAS  Google Scholar 

  • Liu, G.; Sun, J.; Nan, C.-W.; Chen, K.-H.: Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys. Acta Materialia 53 (2005), S. 3459–3468

    Article  CAS  Google Scholar 

  • Liu, G.; Zhang, G.J.; Ding, C.D.; Sun, J.; Chen, K.H.: The influence of multiscalesized second phase particles on ductility of aged aluminum alloys. Metallurgical and Materials Transactions A, Vol. 35A (2004), S. 1725–1734

    Article  CAS  Google Scholar 

  • Lloyd, D.J.: The scaling of the tensile ductile fracture strain with yield strength in Al alloys. Scripta Materialia 48 (2003), S. 341–344

    Article  CAS  Google Scholar 

  • Ludwik P.; Scheu, R., Stahl und Eisen 45 (1925), S. 373

    Google Scholar 

  • Ludwik, P.: Elemente der technologischen Mechanik. Berlin: Springer-Verlag, OHG, 1909

    Google Scholar 

  • Lumley, R.N.; Morton A.J.; Polmear, I.J.: Control of secondary precipitation to improve the performance of aluminium alloys. Mater. Science Forum 396–402 (2002), S. 893–898

    Google Scholar 

  • Lumley, R.N.; Morton A.J.; Polmear, I.J.: Development of properties during secondary ageing of aluminium alloys. Mater. Science Forum 426–433 (2003), S. 303–308

    Google Scholar 

  • Lumley, R.N.; Morton A.J.; Polmear, I.J.: Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing. Acta Materialia 50 (2002), S. 3597–3608

    Article  CAS  Google Scholar 

  • Lumley, R.N.; Morton A.J.; Polmear, I.J.: Enhanced creep resistance in underaged aluminum alloys. Mater. Science Forum 331–337 (2000), S. 1495–1500

    Google Scholar 

  • Lumley, R.N.; Polmear, I.J.: The effect of long term creep exposure on the microstructure and properties of an underaged Al-Cu-Mg-Ag alloy. Scripta Materialia 50 (2004), S. 1227–1231

    Article  CAS  Google Scholar 

  • Maire, E.; Franciosi, P.; Vincent, A.; Grenier, J.C.; Daniel, D.: Experimental characterisation of damage during cold forming of aluminium sheets by means of high resolution X ray tomography. Aluminium 80 (2004), S. 696–701

    CAS  Google Scholar 

  • Manson, S.S.: Behavior of materials under conditions of thermal stress. Techn. Note No. 2933, NACA (1953), Report No. 1170 (1954)

    Google Scholar 

  • McClintock, F.A.: Ductility. Metals Park, Ohio: American Soc. for Metals, ASM, 1968

    Google Scholar 

  • McClintock, F.A.; Argon, A.S.: Mechanical behavior of materials. Reading, Maß.: Addison-Wesley Publ. Co. Inc., 1966

    Google Scholar 

  • McKittrick, J.; Liaw, P.K.; Kwun, S.I.; Fine, M.E.: Threshold for fatigue macro-crack propagation in some aluminum alloys. Met. Trans. A, 12A (1981), S. 1535–1539

    Article  Google Scholar 

  • Meggiolaro, M.A.; Castro, J.T.P.: Statistical evaluation of strain-life fatigue crack initiation predictions. International Journal of Fatigue 26 (2004), S. 463–476

    Article  CAS  Google Scholar 

  • Miller, K.J.: Materials science perspective of metal fatigue resistance. Mater. Sci. Technol. Vol. 9 (1993), S. 453–462

    CAS  Google Scholar 

  • Morgenstern, C.; Kotowski, J.: Ermittlung von Grundlagen für die praktische Anwendung örtlicher Konzepte zur Schwingfestigkeitsbewertung geschweißter Aluminiumbauteile. Forschungsvorhaben DVS-Nr. 9.026 AiF Nr. 12.536, LBF Darmstadt und IfS Braunschweig (2003)

    Google Scholar 

  • Morgenstern, C.; Sonsino, C.M.; Kotowski, J.; Dilger, K.; Sorbo, F.: Anwendung des Konzepts der Mikrostützwirkung zur Schwingfestigkeitsbewertung geschweißter Aluminiumverbindungen aus AlMg4,5Mn und AlMgSi1 T6. Schweißen und Schneiden 56 (2004), S. 528–544

    Google Scholar 

  • Morgenstern, C.; Hanselka, H.: Kerbgrundkonzepte für die schwingfeste Auslegung von Aluminiumschweißverbindungen am Beispiel der naturharten Legierung AlMg4,5Mn (AW-5083) und der warmausgehärteten Legierung AlMgSi1 T6 (AW-6082 T6). Mat.-wiss. u. Werkstofftech. 37 (2006), S. 994–1005

    Article  CAS  Google Scholar 

  • Mori, L: Caratteristiche meccaniche della leghe leggere a bassa temperatura. Alluminio 27 (1958), S. 495–501

    Google Scholar 

  • Morris, W.L.; Cox, B.N.; James, M.R.: Localized surface deformation of an Al-4% Cu alloy in fatigue. Acta Metallurgica, Vol. 37, (1989) S. 457–464

    Article  CAS  Google Scholar 

  • Morrow, JD: Cyclic plastic strain energy and fatigue of metals. Internal friction, damping, and cyclic plasticity. ASTM STP 378. Philadelphia (PA): American Society for Testing and Materials (1964), S. 45–87

    Google Scholar 

  • Mughrabi H.: Introduction to the viewpoint set on surface effects in cyclic deformation and fatigue. Scripta Metall Mater 26 (1992) S.1499–1504

    Article  CAS  Google Scholar 

  • Murakami, Y. (Hrg.): Stress intensity factors handbook. Pergamon Press Oxford (1987)

    Google Scholar 

  • Naka, T.; Yoshida, F.: Deep drawability of type 5083 aluminium-magnesium alloy sheet under various conditions of temperature and forming speed. J. Materials Processing Technology 89–90 (1999), S. 19–23

    Article  Google Scholar 

  • Nakai, M.; Eto, T.: New aspects of development of high strength aluminum alloys for aerospace applications. Materials Science and Engineering A285 (2000), S. 62–68

    CAS  Google Scholar 

  • Needleman, A.; Tvergaard, V.: An analysis of ductile rupture in notched bars. J. Mech. Phys. Solids 32 (1984), S. 461–490

    Article  Google Scholar 

  • Needleman, A.; Tvergaard, V.: An analysis of ductile rupture modes at a crack tip. J. Mech. Phys. Solids 35 (1987), S. 151–183

    Article  Google Scholar 

  • Nes, E.; Marthinsen, K.: Modeling the evolution in microstructure and properties during plastic deformation of f.c.c.-metals and alloys — an approach towards a unified model. Materials Science and Engineering A322 (2002), S. 176–193

    CAS  Google Scholar 

  • Neuber, H.: Zur Theorie der technischen Formzahl. Forschung Ingenieurwesen 7 (1936), S. 271

    Article  Google Scholar 

  • Neuber, H.: Theory of stress concentration for shear strained prismatical bodies with arbitrary non-linear stress strain laws. J. Appl. Mech., 1961, S. 544–550

    Google Scholar 

  • Neuber, H.: Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen. Konstruktion 20 (1968), S. 245–251 (a)

    Google Scholar 

  • Neuber, H.: Theoretical determination of fatigue strength at stress concentration. AFML-TR-68-19 (1968) (b)

    Google Scholar 

  • Newman, J.C., Jr. and Raju, I. S.: “Stress Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies”, Fracture Mechanics: Fourteenth Symposium-Volume I: Theory and Analysis, ASTM STP 791 (1983), J. C. Lewis and G. Sines, Eds., American Society for Testing and Materials, pp. I-238–I-265

    Google Scholar 

  • Nielsen, H.: Über das Festigkeitsverhalten von Aluminium-Magnesium-Knetlegierungen bei tiefen Temperaturen. Aluminium 37 (1961), S. 802–807

    Google Scholar 

  • Oeser, S.; Memhard, D.; Blauel, J.G.; Böhme, W.: Verformungsfähigkeit, Festigkeit und Zähigkeit von Al-6XXX-Profilschweißverbindungen bei statischer und crashartiger Belastung. Abschlußbericht zum Forschungsvorhaben AIF/10.978 N/DVS-Nr. 9.015, Okt. 2000

    Google Scholar 

  • Oosterkamp, L.D.; Ivankovic, A.; Venizelos, G.: High strain rate properties of selected aluminium alloys. Materials Science and Engineering A278 (2000), S. 225–235

    CAS  Google Scholar 

  • Ostermann, F.: Abhängigkeit der Bruchzähigkeit von plastischen Werkstoffkenngrößen bei hochfesten Aluminium-Legierungen. Fortschr. Ber. VDI-Z Reihe 5 Nr. 20 (1975), S. 34–35

    Google Scholar 

  • Ostermann, F.: Comments on the significance of plastic instability and strain hardening for fracture toughness of aluminum alloys. Specialists Meeting on Alloy Design for Fatigue and Fracture Resistance, AGARD Conf. Proc. No. 185, Brüssel, 1975

    Google Scholar 

  • Pantelakis, S.; Kyrsanidi, A.; El-Magd, E.; Dünnwald, J.; Y. Barbaux, Y.; Pons, G.: Creep resistance of aluminium alloys for the next generation supersonic civil transport aircrafts. Theoretical and Applied Fracture Mechanics 31 (1999), S. 31–39

    Article  CAS  Google Scholar 

  • Pardoen, T.; Dumont, D.; Deschamps, A.; Brechet, Y.: Grain boundary versus transgranular ductile failure. J. Mechanics and Physics of Solids 51 (2003) S. 637–665

    Article  CAS  Google Scholar 

  • Paris, P.C.; Gomez, M.P.; Anderson, W.E.: A rational analytical theory of fatigue. Trend in Engineering 13 (1961), S. 9–14

    Google Scholar 

  • Pedersen, K.; Segle, P.; Furu, T.; Ekström, H.E.: The effect of pre-strain on the fatigue life properties of AA6063 and AA6082 alloys. VIR[*] Conference 2004, Aluminium 80 (2004), S. 747–752

    CAS  Google Scholar 

  • Pelloux, R.M.: Influence of grain size on fatigue. U.S. Army Sagamore Conf., 1969

    Google Scholar 

  • Plumbridge, W.J.; Ryder, D.A.: The metallography of fatigue. Metallurgical Reviews, 1970, Review 136, S. 119–142

    Google Scholar 

  • Polmear, I.J.; Pons, G.; Barbaux, Y.; Octor, H.; Sanchez, C.; Morton, A.J.; Borbidge, W.; Rogers, S.: After Concorde: evaluation of creep resistant Al-Cu-Mg-Ag alloys. Mater. Sci. Tech. 15 (1999), S. 861–868

    CAS  Google Scholar 

  • prEN 1999-1-3: 2005. Bemessung und Konstruktion von Aluminiumtragwerken, Teil 1-3: Ermüdungsbeanspruchte Tragwerke

    Google Scholar 

  • Pyttel, B.; Kaiser, B.; Schwerdt, D.; Trossmann, T.: Ermüdungsverhalten ausgewählter Werkstoffe und Bauteile bei sehr hohen Schwingspielzahlen. Mat.-wiss. u. Werkstofftechnik 37 (2006), S. 820–832

    Article  CAS  Google Scholar 

  • Radaj, D.: Ermüdungsfestigkeit — Grundlagen für Leichtbau, Maschinen-und Stahlbau. Berlin, Heidelberg, New York: Springer-Verlag (1995)

    Google Scholar 

  • Ramberg, W.; Osgood, W.R.: Description of stress-strain curves by three parameters. National Advisory Committee for Aeronautics, Technical Note No. 902 (1943)

    Google Scholar 

  • Rashkeev, S.N.; Glazov, M.V.; Barlat, F.: Strain-rate sensitivity limit diagrams and plastic instabilities in a 6xxx series aluminum alloy Part I: Analysis of temporal stress-strain serrations. Computational Materials Science 24 (2002), S. 295–309

    Article  CAS  Google Scholar 

  • Raviprasad, K.; Hutchinson, C.R.; Sakurai, T.; Ringer, S.P.:Precipitation processes in an Al-2.5Cu-1.5Mg (wt. %) alloy microalloyed with Ag and Si. Acta Materialia 51 (2003), S. 5037–5050

    Article  CAS  Google Scholar 

  • Raymond, M.H.; Coffin, L.F.Jr.: Geometric and hysteresis effects in strain-cycled aluminum. Acta Met. 11 (1963), S. 801–807

    Article  Google Scholar 

  • Robinson, J.S.; Cudd, R. L.; Evans, J. T.: Creep resistant aluminium alloys and their applications. Materials Science and Technology 19 (2003), S. 143–155

    Article  CAS  Google Scholar 

  • Rodopoulos, C.A.; Curtis, S.A.; de los Rios, E.R.; SolisRomero, J.: Optimisation of the fatigue resistance of 2024-T351 aluminium alloys by controlled shot peening — methodology, results and analysis. Intern. J. Fatigue 26 (2004), S. 849–856

    Article  CAS  Google Scholar 

  • Rooke, D.P.; Cartwright, D.J.: Compendium of stress intensity factors. Her Majesty’s Stationary Office, London (1976)]

    Google Scholar 

  • Rosenfield, A.R.; McEvily, A.J.: Some recent developments in fatigue and fracture. AGARD Rep. No. 610 on Metallurgical Aspects of Fatigue and Fracture Toughness, 1973

    Google Scholar 

  • Ryum, N.; Videm, M.: Cyclic deformation and fracture of pure aluminium polycrystals. Materials Science and Engineering A, Vol. 219, (1996), S. 11–20

    Article  Google Scholar 

  • Ryum, N.; Videm, M.: Cyclic deformation of [001] aluminium single crystals. Materials Science and Engineering A, Vol. 219 (1996), S. 1–10

    Article  Google Scholar 

  • Sadananda, K.; Vasudevan, A.K.: Short crack growth and internal stresses. Int. J. Fatigue Vol. 19 (1997) Supp. No. 1, S. 99–108

    Article  Google Scholar 

  • Sandström, R.: Creep rupture data for aluminium alloys. Part I: Aluminium 69 (1993), S. 263–268. Part II: Aluminium 69 (1993), S. 361–363. Part III: Aluminium 69 (1993), S. 458–461

    Google Scholar 

  • Sandström, R.: Creep rupture strengths up to 100.000 hours for aluminium alloys. Aluminium 72 (1996), S. 910–917

    Google Scholar 

  • Sarkar, J.; Kutty, T.R.G.; Conlon, K.T.; Wilkinson, D.S.; Embury, J.D.; Lloyd, D.J.: Tensile and bending properties of AA5754 aluminum alloys. Materials Science and Engineering A316 (2001), S. 52–59

    CAS  Google Scholar 

  • Sarkar, J.; Kutty, T.R.G.; Wilkinson, D.S.; Embury, J.D.; Lloyd, D.J.: Tensile properties and bendability of T4 treated AA6111 aluminum alloys. Materials Science and Engineering A369 (2004), S. 258–266

    CAS  Google Scholar 

  • Scharf, G.; Grzemba, B.: Zähigkeitsverhalten von AlMgSi-Knetwerkstoffen. Aluminium 58 (1982), S. 391–397

    Google Scholar 

  • Schwalbe, K.-H.: Bruchmechanik metallischer Werkstoffe. München: Carl Hanser Verlag, 1980

    Google Scholar 

  • Shatla, M.; Kerk, C.; Altan, T.: Process modeling in machining. Part I: determination of flow stress data. International Journal of Machine Tools & Manufacture 41 (2001), S. 1511–1534

    Article  Google Scholar 

  • Skrotzki, B.; Murken, J.: On the effects of stress on nucleation, growth, and coarsening of precipitates in age-hardenable aluminujm alloys. In: Lightweight Alloys for Aerospace Applications, Eds. K. Jata, E. W. Lee, W. Frazier and N. J. Kim, TMS (The Minerals, Metals & Materials Society), 2001

    Google Scholar 

  • Smith, K.N.; Watson, P.; Topper, T.H.: A stress strain function for the fatigue of metals. J. of Materials 5 (1970), Nr. 4, S. 767–778

    Google Scholar 

  • Snowden, K. U.: Dislocation arrangements during cyclic hardening and softening in Al crystals. Acta Metallurgica, Vol. 11 (1963), S. 675–684

    Article  Google Scholar 

  • Somoza, A.; Dupasquier, A.; Polmear, I.J.; Folegati, P.; Ferragut, R.: Positronannihilation study of the aging kinetics of AlCu-based alloys. II. Ag microalloying. Phys. Rev. B 61, (2000). S. 14464–14473

    Article  CAS  Google Scholar 

  • Sonsino, C.M.: Einfluß von Kaltverformungen bis 5% auf das Kurzzeitschwingfestigkeitsverhalten des Feinkornbaustahles StE 47 und der Aluminiumlergierung AlCuMg2. Z. Werkstofftechnik 14 (1983), S. 1–11

    Article  Google Scholar 

  • Sonsino, C.M.; Dieterich, K.: Einfluß von Porosität auf das Schwingfestigkeitsverhalten von Aluminium-Gußwerkstoffen. Teil 1: Gießereiforschung 43 (1991), S. 119–130

    CAS  Google Scholar 

  • Speakman, E.R.: Fatigue life improvement through stress coining methods. Achievement of high fatigue resistance in metals and alloys, ASTM STP 467 (1970), S. 209–227

    Google Scholar 

  • Staley, J.T.; Truckner, W.G.; Bucci, R.J.; Thakker, A.B.: Improving fatigue resistance of aluminum aircraft alloys. Aluminium 53 (1977), S. 667–669

    CAS  Google Scholar 

  • Starke, E.A. Jr.; Williams, J.C.: Microstructure and the fracture mechanics of fatigue crack propagation. In: Fracture Mechanics: Perspectives and Directions, ASTM STP 1020, Wei, R.P. and Gangloff, R.P., (eds.) American Society for Testing and Materials, Philadelphia, 1989, S. 184–205

    Google Scholar 

  • Stone, R.H. van; Merchant, R.H.; Low jr., J.R.: Investigation of the plastic fracture of high-strength aluminum alloys, in: C.F. Hickey, R.G. Broadwell (Eds.), Fatigue and Fracture Toughness Cryogenic Behavior ASTM STP 556, 1974, S. 93–124

    Google Scholar 

  • Stubbington, C.A.; Forsyth, P.J.E.: Some obeswervations on microstructural damage produced by fatigue of an aluminium-7.5% Zinc-2.5% Magnesium alloy at temperatures between room temperature and 250 °C. Acta Metallurgica. Vol. 14 (1966) S. 5–12

    Article  CAS  Google Scholar 

  • Takuda, H.; Mori, K.; Takakura, N.; Yamaguchi, K.: Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture, Int. J. Mech. Sci. 42 (2000), S. 785–798

    Article  Google Scholar 

  • Teirlinck, D.; Zok, F.; Embury, J.D.; Ashby, M.F.: Fracture mechanism maps in streß space. Acta Metall. Vol. 35 (1988), S. 1213–1228

    Google Scholar 

  • Tetelmann, A.S.; McEvily, A.J.: Fracture of Structural Materials. New York: John Wiley & Sons, Inc., 1967

    Google Scholar 

  • Thompson, A.W.; Backofen, W.A: The effect of grain size on fatigue. Acta Metallurgica, Vol. 19, (1971), S. 597–606

    Article  CAS  Google Scholar 

  • Topper, T.H.; Wetzel, R.M.; Morrow, J.D.: Neuber’s rule applied to fatigue of notched specimens. J. of Materials 4 (19, S. 200–209

    Google Scholar 

  • Turnbull, A.; de los Rios, E.R.: The effect of grain size on fatigue crack growth in an aluminium magnesium alloy. Fat. Fract. Eng. Mater. Struct. (1995) 18(11), S. 1355–1356

    Article  CAS  Google Scholar 

  • Turnbull, A.; de los Rios, E.R.: The effect of grain size on the fatigue of comercially pure aluminium. Fat. Fract. Eng. Mater. Struct. (1995) 18, 1455–1467

    Article  CAS  Google Scholar 

  • Tvergaard, V.: Material failure by void growth to coalescence. Adv. Appl. Mech. 27 (1990), S. 83–147

    Article  Google Scholar 

  • Valtinat, G.: Aluminium im konstruktiven Ingenieurbau. Bauingenieur-Praxis. Berlin: Verlag Ernst & Sohn, 2003

    Google Scholar 

  • Vegter, H., An, Y., Pijlman, H.H., Huétink, J.: Advanced mechanical testing on aluminium alloys and low carbon steels for sheet forming. Proc. Numisheet99 (1999)

    Google Scholar 

  • Venkataraman, G.; Chung, Y.-W.; Nakasone, Y.; Mura, T.: Free energy formulation of fatigue crack initiation along persistent slip bands: calculation of S-N curves and crack depths. Acta Metallurgica et Materialia, Vol. 38 (1990), S. 31–40

    Article  CAS  Google Scholar 

  • Voce, E.: The relationship between stress and strain, J. Inst. Met. 74 (1948), S. 537

    CAS  Google Scholar 

  • Wagenhofer, M.; Erickson-Natishan, M.-A.; Armstrong, R.W.; Zerilli, F.J.: Influences of strain rate and grain size on yield and serrated flow in commercial Al-Mg alloy 5086. Scripta Materialia, Vol. 41 (1999), S. 1177–1184

    Article  CAS  Google Scholar 

  • Wagner, R.V.; Reid, L.; Easterbrook, E.T.; Rufin, A.C.: Beneficial effects of split sleeve cold expansion on the fatigue lives of pre-cycled cold expanded structure. In: 1992 USAF Aircraft Structural Integrity Program Conference, San Antonio, Texas (1992)

    Google Scholar 

  • Walgraef, D.: Rate equation approach to dislocation dynamics and plastic deformation. Materials Science and Engineering A322 (2002), S. 167–175

    CAS  Google Scholar 

  • Webernig, W.M.; Krol, J.; Pink, E.: The orientation dependence of serrated flow in polycrystalline thin sheet samples. Mater. Sci. Eng. 80 (1986), S. L15–L18

    Article  Google Scholar 

  • Wellinger, K.; Sautter, S.: Zeitfestigkeit von Aluminiumlegierungen bei dehnungskontrollierter Beanspruchung. Aluminium 47 (1971), S. 741–744

    CAS  Google Scholar 

  • Wen, J.; Huang, Y.; Hwang, K.C.; Liu, C.; Li, M.: The modified Gurson model accounting for the void size effect. International Journal of Plasticity 21 (2005), S. 381–395

    Article  Google Scholar 

  • Wierzbickei, T.; Bao, Y.; Lee, Y.-W.; Bai, Y.: Calibration and evaluation of seven fracture models. Intern. J. Mech. Sci. 47 (2005), S. 719–743

    Article  Google Scholar 

  • Wohlfahrt, H.: Schwingfestigkeitsoptimierung bei Schweißverbindungen aus Aluminiumlegierungen. Abschlußbericht DFG-Forschungsvorhaben Wo 344/2 TU Braunschweig 1997

    Google Scholar 

  • Woodward, A. R., persönl. Mitteilung, 1995

    Google Scholar 

  • Yeh, J.R.; Summe T.L.; Seksaria, D.C.: The Development of an Aluminium Failure Model for Crashworthiness Design, AMD-Vol. 237/BED-Vol. 45, Crashworthiness, Occupant Protection and Biomechanics in Transportation Systems, ASME, 1999

    Google Scholar 

  • Zehetbauer, M.: Cold work hardening in stages IV and V of F.C.C. metals — II. Model fits and physical results. Acta Metallurgica et Materialia, 41 (1993), S. 589–599

    Article  CAS  Google Scholar 

  • Zehnder, A.T.; Hui, C.Y.: A simple model relating crack growth resistance to fracture process parameters in elastic-plastic solids. Scripta mater. 42 (2000), S. 1001–1005

    Article  CAS  Google Scholar 

  • Zhai, T.; Martin J. W.; Briggs, G. A. D.: Fatigue damage at room temperature in aluminium single crystals — II. TEM. Acta Materialia Vol. 44, (1996), S. 1729–1739

    Article  CAS  Google Scholar 

  • Zhai, T.; Martin, J. W.; Briggs, G. A. D.: Fatigue damage in aluminum single crystals — I. On the surface containing the slip burgers vector. Acta Metallurgica et Materialia, Vol. 43 (1995), S. 3813–3825

    Article  CAS  Google Scholar 

  • Zhang, B.; Poirier, D. R.; Chen, W.: High-cycle fatigue crack initiation site distribution in A356.2. Automotive Alloys 1999, Ed. Das, SK., The Minerals, Metals & Materials Society, 2000

    Google Scholar 

  • Zhang, X.; Wang, Z.: Fatigue life improvement in fatigue-aged fastener holes using the cold expansion technique. Intern. J. Fatigue 25 (2003), S. 1249–1257

    Article  CAS  Google Scholar 

  • Zhuang W.Z.; Halford, G.H.: Investigation of residual stress relaxation under cyclic load. Intern. J. Fatigue 23 (2001), S. 31–37

    Article  Google Scholar 

  • Zinkham, R.E.; Ashton, R.F.: Fracture of 5083-0 aluminium LNG weldments. Aluminium 50 (1974), S. 462–466

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Mechanische Eigenschaften. In: Anwendungstechnologie Aluminum. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69451-9_6

Download citation

Publish with us

Policies and ethics