Skip to main content

Kidney Function Tests and Urinalysis

  • Chapter
  • First Online:
Management of Acute Kidney Problems
  • 2704 Accesses

Abstract

The most common surrogates of kidney function are serum creatinine, urea, cystatin C; however, these all have limitations, most important of which is that they do not accurately reflecting real-time dynamic changes in glomerular filtration rate (GFR) that occur in acute kidney injury (AKI) The Cockcroft-Gault and Modification of Diet in Renal Disease (MDRD) Study Group equations are the most common methods used to estimate GFR; however, they have limited relevance to critically ill patients with AKI. Urine output can be a sensitive indicator for changes in renal hemodynamics, but it also has limited sensitivity and specificity Several tests of urinary biochemistry, derived indices and microscopy (i.e., FENa, UNa, FEU) have traditionally been used as aids for the detection and classification of AKI; however, their value in sick patients (i.e., after fluid resuscitation, diuretics, vasopressor infusions, radiocontrast media, and nephrotoxic drugs) remains uncertain Novel urinary biomarkers (i.e., NHE3, NGAL, KIM-1, IL-18) have recently been characterized that may provide added diagnostic value and prognostic information for critically ill patients in AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagshaw SM, Laupland KB, Doig CJ, et al. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Crit Care. 2005;9:R700–R709

    Article  PubMed  Google Scholar 

  2. de Mendonca A, Vincent JL, Suter PM, et al. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med. 2000;26:915–921

    Article  CAS  PubMed  Google Scholar 

  3. Liano F, Junco E, Pascual J, Madero R, Verde E. The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. The Madrid Acute Renal Failure Study Group. Kidney Int Suppl. 1998;66: S16–24

    CAS  PubMed  Google Scholar 

  4. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–818

    Article  CAS  PubMed  Google Scholar 

  5. Metnitz PG, Krenn CG, Steltzer H, et al. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med. 2002;30:2051–2058

    Article  PubMed  Google Scholar 

  6. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8: R204–212

    Article  PubMed  Google Scholar 

  7. Uchino S, Bellomo R, Goldsmith D, Bates S, Kellum J, Ronco C. An Assessment of the RIFLE Criteria for Acute Renal Failure in Hospitalized Patients. Crit Care Med. 2006;34:1913–1917

    Article  PubMed  Google Scholar 

  8. Hoste EA, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10:R73

    Article  PubMed  Google Scholar 

  9. Hoste EAJ, Kellum JA. Acute kidney injury: epidemiology and diagnostic criteria. Curr Opin Crit Care. 2006;12: 531–537

    Article  PubMed  Google Scholar 

  10. Stevens LA, Levey AS. Measurement of kidney function. Med Clin North Am. 2005;89:457–473

    Article  PubMed  Google Scholar 

  11. Shemesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985;28:830–838

    Article  CAS  PubMed  Google Scholar 

  12. Grossman RA, Hamilton RW, Morse BM, Penn AS, Goldberg M. Nontraumatic rhabdomyolysis and acute renal failure. N Engl J Med. 1974;291:807–811

    Article  CAS  PubMed  Google Scholar 

  13. Oh MS. Does serum creatinine rise faster in rhabdomyolysis? Nephron. 1993;63:255–2557

    Article  CAS  PubMed  Google Scholar 

  14. Molitch ME, Rodman E, Hirsch CA, Dubinsky E. Spurious serum creatinine elevations in ketoacidosis. Ann Intern Med. 1980;93:280–281

    CAS  PubMed  Google Scholar 

  15. Kaji DM, Lim J, Shilkoff W, Zaidi W. Urea inhibits the Na-K pump in human erythrocytes. J Membr Biol. 1998;165: 125–131

    Article  CAS  PubMed  Google Scholar 

  16. Lim J, Gasson C, Kaji DM. Urea inhibits NaK2Cl cotransport in human erythrocytes. J Clin Invest. 1995;96: 2126–2132

    Article  CAS  PubMed  Google Scholar 

  17. Prabhakar SS, Zeballos GA, Montoya-Zavala M, Leonard C. Urea inhibits inducible nitric oxide synthase in macrophage cell line. Am J Physiol. 1997;273:C1882–1888

    CAS  PubMed  Google Scholar 

  18. Chalasani N, Clark WS, Wilcox CM. Blood urea nitrogen to creatinine concentration in gastrointestinal bleeding: a reappraisal. Am J Gastroenterol. 1997;92:1796–1799

    CAS  PubMed  Google Scholar 

  19. Sherman DS, Fish DN, Teitelbaum I. Assessing renal function in cirrhotic patients: problems and pitfalls. Am J Kidney Dis. 2003;41:269–278

    Article  CAS  PubMed  Google Scholar 

  20. Papadakis MA, Arieff AI. Unpredictability of clinical evaluation of renal function in cirrhosis. Prospective study. Am J Med. 1987;82:945–952

    Article  CAS  PubMed  Google Scholar 

  21. Han WK, Bonventre JV. Biologic markers for the early detection of acute kidney injury. Curr Opin Crit Care. 2004; 10:476–482

    Article  PubMed  Google Scholar 

  22. Herget-Rosenthal S, Feldkamp T, Volbracht L, Kribben A. Measurement of urinary cystatin C by particle-enhanced nephelometric immunoassay: precision, interferences, stability and reference range. Ann Clin Biochem. 2004;41: 111–118

    Article  CAS  PubMed  Google Scholar 

  23. Herget-Rosenthal S, Kribbin A. Urinary cystatin C: pre-analytical and analytical characteristics and its clinical application. Dade Behring J. 2004:13–15

    Google Scholar 

  24. Knight EL, Verhave JC, Spiegelman D, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004; 65:1416–1421

    Article  CAS  PubMed  Google Scholar 

  25. Manetti L, Genovesi M, Pardini E, et al. Early effects of methylprednisolone infusion on serum cystatin C in patients with severe Graves’ ophthalmopathy. Clin Chim Acta. 2005; 356:227–228

    Article  CAS  PubMed  Google Scholar 

  26. Manetti L, Pardini E, Genovesi M, et al. Thyroid function differently affects serum cystatin C and creatinine concentrations. J Endocrinol Invest. 2005;28:346–349

    CAS  PubMed  Google Scholar 

  27. Rule AD, Larson TS. Response to ‘Calculation of glomerular filtration rate using serum cystatin C in kidney transplant recipients’. Kidney Int. 2006;70:1878–1879

    Article  CAS  Google Scholar 

  28. Villa P, Jimenez M, Soriano MC, Manzanares J, Casasnovas P. Serum cystatin C concentration as a marker of acute renal dysfunction in critically ill patients. Crit Care. 2005;9: R139–143

    Article  PubMed  Google Scholar 

  29. Coll E, Botey A, Alvarez L, et al. Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am J Kidney Dis. 2000;36:29–34

    Article  CAS  PubMed  Google Scholar 

  30. Hoek FJ, Kemperman FA, Krediet RT. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant. 2003;18:2024–2031

    Article  CAS  PubMed  Google Scholar 

  31. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40:221–226

    Article  CAS  PubMed  Google Scholar 

  32. Grubb A, Bjork J, Lindstrom V, Sterner G, Bondesson P, Nyman U. A cystatin C-based formula without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using the Cockcroft-Gault formula. Scand J Clin Lab Invest. 2005;65: 153–162

    Article  CAS  PubMed  Google Scholar 

  33. Grubb A, Nyman U, Bjork J, et al. Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin Chem. 2005;51:1420–1431

    Article  CAS  PubMed  Google Scholar 

  34. Poge U, Gerhardt T, Stoffel-Wagner B, et al. Cystatin C-based calculation of glomerular filtration rate in kidney transplant recipients. Kidney Int. 2006;70:204–210

    Article  CAS  PubMed  Google Scholar 

  35. Poge U, Gerhardt T, Stoffel-Wagner B, Klehr HU, Sauerbruch T, Woitas RP. Calculation of glomerular filtration rate based on cystatin C in cirrhotic patients. Nephrol Dial Transplant. 2006;21:660–664

    Article  CAS  PubMed  Google Scholar 

  36. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41

    Article  CAS  PubMed  Google Scholar 

  37. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–470

    CAS  PubMed  Google Scholar 

  38. Hou SH, Bushinsky DA, Wish JB, Cohen JJ, Harrington JT. Hospital-acquired renal insufficiency: a prospective study. Am J Med. 1983;74:243–248

    Article  CAS  PubMed  Google Scholar 

  39. Espinel CH. The FENa test. Use in the differential diagnosis of acute renal failure. JAMA. 1976;236:579–581

    Article  CAS  PubMed  Google Scholar 

  40. Miller TR, Anderson RJ, Linas SL, et al. Urinary diagnostic indices in acute renal failure: a prospective study. Ann Intern Med. 1978;89:47–50

    CAS  PubMed  Google Scholar 

  41. Espinel CH, Gregory AW. Differential diagnosis of acute renal failure. Clin Nephrol. 1980;13:73–77

    CAS  PubMed  Google Scholar 

  42. Zarich S, Fang LS, Diamond JR. Fractional excretion of sodium. Exceptions to its diagnostic value. Arch Intern Med. 1985;145:108–112

    Article  CAS  PubMed  Google Scholar 

  43. Pru C, Kjellstrand CM. The FENa test is of no prognostic value in acute renal failure. Nephron. 1984;36:20–23

    Article  CAS  PubMed  Google Scholar 

  44. Carvounis CP, Nisar S, Guro-Razuman S. Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int. 2002;62:2223–2229

    Article  CAS  PubMed  Google Scholar 

  45. Kaplan AA, Kohn OF. Fractional excretion of urea as a guide to renal dysfunction. Am J Nephrol. 1992;12:49–54

    Article  CAS  PubMed  Google Scholar 

  46. Langenberg C, Wan L, Bagshaw SM, Egi M, May CN, Bellomo R. Urinary biochemistry in experimental septic acute renal failure. Nephrol Dial Transplant. 2006

    Google Scholar 

  47. Fang L, Sirota R, Ebert T, Lichtenstein N. Low fractional excretion of sodium with contrast media-induced acute renal failure. Arch Intern Med. 1980;140:531–533

    Article  CAS  PubMed  Google Scholar 

  48. Corwin HL, Schreiber MJ, Fang LS. Low fractional excretion of sodium. Occurrence with hemoglobinuric- and myoglobinuric-induced acute renal failure. Arch Intern Med. 1984;144:981–982

    Article  CAS  PubMed  Google Scholar 

  49. Vaz AJ. Low fractional excretion of urine sodium in acute renal failure due to sepsis. Arch Intern Med. 1983;143: 738–739

    Article  CAS  PubMed  Google Scholar 

  50. Esson ML, Schrier RW. Diagnosis and treatment of acute tubular necrosis. Ann Intern Med. 2002;137:744–752

    PubMed  Google Scholar 

  51. Needham E. Management of acute renal failure. Am Fam Physician. 2005;72:1739–1746

    PubMed  Google Scholar 

  52. Van Biesen W, Yegenaga I, Vanholder R, et al. Relationship between fluid status and its management on acute renal failure (ARF) in intensive care unit (ICU) patients with sepsis: a prospective analysis. J Nephrol. 2005;18:54–60

    PubMed  Google Scholar 

  53. Zager RA, Rubin NT, Ebert T, Maslov N. Rapid radioimmunoassay for diagnosing acute tubular necrosis. Nephron. 1980;26:7–12

    Article  CAS  PubMed  Google Scholar 

  54. Diamond JR, Yoburn DC. Nonoliguric acute renal failure associated with a low fractional excretion of sodium. Ann Intern Med. 1982;96:597–600

    CAS  PubMed  Google Scholar 

  55. Cabrera J, Arroyo V, Ballesta AM, et al. Aminoglycoside nephrotoxicity in cirrhosis. Value of urinary beta 2-microglobulin to discriminate functional renal failure from acute tubular damage. Gastroenterology. 1982;82:97–105

    CAS  PubMed  Google Scholar 

  56. Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow in experimental septic acute renal failure. Kidney Int. 2006;69:1996–2002

    Article  CAS  PubMed  Google Scholar 

  57. Fushimi K, Shichiri M, Marumo F. Decreased fractional excretion of urate as an indicator of prerenal azotemia. Am J Nephrol. 1990;10:489–494

    Article  CAS  PubMed  Google Scholar 

  58. Smith-Erichsen N. Renal and liver function tests in surgical septicemia. Acta Anaesthesiol Scand. 1987;31:208–213

    Article  CAS  PubMed  Google Scholar 

  59. Perlmutter M, Grossman SL, Rothenberg S, Dobkin G. Urine serum urea nitrogen ratio; simple test of renal function in acute azotemia and oliguria. JAMA 1959;170: 1533–1537

    CAS  Google Scholar 

  60. Tungsanga K, Boonwichit D, Lekhakula A, Sitprija V. Urine uric acid and urine creatine ratio in acute renal failure. Arch Intern Med. 1984;144:934–937

    Article  CAS  PubMed  Google Scholar 

  61. Chesney PJ, Davis JP, Purdy WK, Wand PJ, Chesney RW. Clinical manifestations of toxic shock syndrome. JAMA. 1981;246:741–748

    Article  CAS  PubMed  Google Scholar 

  62. Bagshaw SM, Langenberg C, Bellomo R. 2006 Urinary biochemistry and microscopy in septic acute renal failure – a systematic review. Am J Kidney Dis. 48:695–705

    Article  CAS  PubMed  Google Scholar 

  63. Thorevska N, Sabahi R, Upadya A, Manthous C, Amoateng-Adjepong Y. Microalbuminuria in critically ill medical patients: prevalence, predictors, and prognostic significance. Crit Care Med. 2003;31:1075–1081

    Article  CAS  PubMed  Google Scholar 

  64. Gay C, Cochat P, Pellet H, Floret D, Buenerd A. Urinary sediment in acute renal failure. Pediatrie. 1987;42:723–727

    CAS  PubMed  Google Scholar 

  65. Graber M, Lane B, Lamia R, Pastoriza-Munoz E. Bubble cells: renal tubular cells in the urinary sediment with characteristics of viability. J Am Soc Nephrol. 1991;1:999–1004

    CAS  PubMed  Google Scholar 

  66. Richmond JM, Sibbald WJ, Linton AM, Linton AL. Patterns of urinary protein excretion in patients with sepsis. Nephron. 1982;31:219–223

    Article  CAS  PubMed  Google Scholar 

  67. Strauch M, McLaughlin JS, Mansberger A, et al. Effects of septic shock on renal function in humans. Ann Surg. 1967;165:536–543

    Article  CAS  PubMed  Google Scholar 

  68. Gosling P, Brudney S, McGrath L, Riseboro S, Manji M. Mortality prediction at admission to intensive care: a comparison of microalbuminuria with acute physiology scores after 24 hours. Crit Care Med. 2003;31:98–103

    Article  CAS  PubMed  Google Scholar 

  69. Gosling P, Czyz J, Nightingale P, Manji M. Microalbuminuria in the intensive care unit: Clinical correlates and association with outcomes in 431 patients. Crit Care Med. 2006;34: 2158–2166

    Article  CAS  PubMed  Google Scholar 

  70. Gopal S, Carr B, Nelson P. Does microalbuminuria predict illness severity in critically ill patients on the intensive care unit? A systematic review. Crit Care Med. 2006;34: 1805–1810

    Article  PubMed  Google Scholar 

  71. Morcos SK, el-Nahas AM, Brown P, Haylor J. Effect of iodinated water soluble contrast media on urinary protein assays. BMJ. 1992;305:29

    Article  CAS  PubMed  Google Scholar 

  72. Lugo N, Silver P, Nimkoff L, Caronia C, Sagy M. Diagnosis and management algorithm of acute onset of central diabetes insipidus in critically ill children. J Pediatr Endocrinol Metab. 1997;10:633–639

    CAS  PubMed  Google Scholar 

  73. Zaloga GP, Chernow B, McFadden E, Soldano S, Lyons P, O’Brian JT. Urine glucose testing in the critically ill: a comparison of two enzymatic test strips. Crit Care Med. 1984; 12:188–190

    Article  CAS  PubMed  Google Scholar 

  74. Brosius FC, Lau K. Low fractional excretion of sodium in acute renal failure: role of timing of the test and ischemia. Am J Nephrol. 1986;6:450–457

    Article  CAS  PubMed  Google Scholar 

  75. Marotto MS, Marotto PC, Sztajnbok J, Seguro AC. Outcome of acute renal failure in meningococcemia. Ren Fail. 1997; 19:807–810

    Article  CAS  PubMed  Google Scholar 

  76. Wan L, Bellomo R, Di Giantomasso D, Ronco C. The pathogenesis of septic acute renal failure. Curr Opin Crit Care. 2003;9:496–502

    Article  PubMed  Google Scholar 

  77. Klahr S, Miller SB. Acute oliguria. N Engl J Med. 1998; 338:671–675

    Article  CAS  PubMed  Google Scholar 

  78. Wedeen RP, Udasin I, Fiedler N, et al. Urinary biomarkers as indicators of renal disease. Ren Fail. 1999;21:241–249

    Article  CAS  PubMed  Google Scholar 

  79. Price RG, Wedeen R, Lichtveld MY, et al. Urinary biomarkers: roles in risk assessment to environmental and occupational nephrotoxins: monitoring of effects and evaluation of mechanisms of toxicity. Ren Fail. 1999;21:xiii–xviii

    Article  CAS  PubMed  Google Scholar 

  80. du Cheyron D, Daubin C, Poggioli J, et al. Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am J Kidney Dis. 2003;42:497–506

    Article  CAS  PubMed  Google Scholar 

  81. Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14:2534–2543

    Article  CAS  PubMed  Google Scholar 

  82. Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol. 2004;24:307–315

    Article  CAS  PubMed  Google Scholar 

  83. Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–1238

    Article  CAS  PubMed  Google Scholar 

  84. Wagener G, Jan M, Kim M, et al. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006;105:485–491

    Article  CAS  PubMed  Google Scholar 

  85. Mishra J, Ma Q, Kelly C, et al. Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol. 2006;21:856–863

    Article  PubMed  Google Scholar 

  86. Parikh CR, Jani A, Mishra J, et al. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant. 2006;6: 1639–1645

    Article  CAS  PubMed  Google Scholar 

  87. Ichimura T, Bonventre JV, Bailly V, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273: 4135–4142

    Article  CAS  PubMed  Google Scholar 

  88. Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286:F552–563

    Article  CAS  PubMed  Google Scholar 

  89. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol. 2006;290:F517–529

    Article  CAS  PubMed  Google Scholar 

  90. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002; 62:237–244

    Article  CAS  PubMed  Google Scholar 

  91. D’Amico G, Bazzi C. Urinary protein and enzyme excretion as markers of tubular damage. Curr Opin Nephrol Hypertens. 2003;12:639–643

    Article  PubMed  Google Scholar 

  92. Kwon O, Molitoris BA, Pescovitz M, Kelly KJ. Urinary actin, interleukin-6, and interleukin-8 may predict sustained ARF after ischemic injury in renal allografts. Am J Kidney Dis. 2003;41:1074–1087

    Article  CAS  PubMed  Google Scholar 

  93. Mariano F, Guida G, Donati D, et al. Production of platelet-activating factor in patients with sepsis-associated acute renal failure. Nephrol Dial Transplant. 1999;14:1150–1157

    Article  CAS  PubMed  Google Scholar 

  94. Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis. 2004;43:405–414

    Article  CAS  PubMed  Google Scholar 

  95. Parikh CR, Mishra J, Thiessen-Philbrook H, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70:199–203

    Article  CAS  PubMed  Google Scholar 

  96. Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol. 2005;16:3046–3052

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. Bagshaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bagshaw, S.M. (2010). Kidney Function Tests and Urinalysis. In: Jörres, A., Ronco, C., Kellum, J. (eds) Management of Acute Kidney Problems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69441-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69441-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69413-7

  • Online ISBN: 978-3-540-69441-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics