Skip to main content

Coupled Lithosphere-Surface Processes in Collision Context

  • Conference paper
Thrust Belts and Foreland Basins

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

From the mechanical point of view, a mountain range that exceeds a certain critical height (of about 3 km in altitude, depending on rheology and width) should flatten and collapse within few My as a result of gravitational spreading of its ductile crustal root. Even if the crustal root does not collapse, the mountain range would be levelled by gravity sliding and other surface processes that, in case of static topography, lead to its exponential decay with a characteristic time constant on the order of 2.5 My. However, in nature, mountains grow and stay as localized tectonic features over geologically important periods of time (> 10 My). To explain the paradox of long-term persistence and localized growth of the mountain belts, a number of workers have emphasized the importance of dynamic feedbacks between surface processes and tectonic evolution. Indeed, surface processes modify the topography and redistribute tectonically significant volumes of sedimentary material, which acts as vertical loading over large horizontal distances. This results in dynamic loading and unloading of the underlying crust and mantle lithosphere, whereas topographic contrasts are required to set up erosion and sedimentation processes. Tectonics therefore could be a forcing factor of surface processes and vice versa. One can suggest that the feedbacks between tectonic and surface processes are realized via two interdependent mechanisms:

  1. 1.

    Slope, curvature and height dependence of the erosion/deposition rates

  2. 2.

    Surface load-dependent subsurface processes such as isostatic rebound and lateral ductile flow in the lower or intermediate crustal channel.

Loading/unloading of the surface due to surface processes results in lateral pressure gradients, that, together with low viscosity of the ductile crust, may permit rapid relocation of the matter both in horizontal and vertical direction (upward/downward flow in the ductile crust). In this paper, we overview a number of coupled models of surface and tectonic processes, with a particular focus on 3 representative cases:

  1. 1.

    Slow convergence and erosion rates (Western Alpes)

  2. 2.

    Intermediate rates (Tien Shan, Central Asia)

  3. 3.

    Fast convergence and erosion rates rates (Himalaya, Central Asia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahnert, F., (1970) Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins, Am. J. Sci., 268, 243–263.

    Article  Google Scholar 

  • Ashmore, P. E., (1982) Laboratory modelling of gravel braided stream morphology, Earth Surf. Processes Landforms, 7, 201–225.

    Article  Google Scholar 

  • Andrews, D. J., R.C. Bucknam, (1987) Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res., 92, 12857–12867.

    Google Scholar 

  • Avouac, J.P., (1993) Analysis of scarp profiles: evaluation of errors in morphologic dating, J. Geophys. Res., 98, 6745–6754.

    Google Scholar 

  • Avouac, J.-P., Tapponnier, P., Bai, M., You, H., G. Wang, Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan, J. Geophys. Res., 98, 6755–6804, 1993.

    Google Scholar 

  • Avouac, J.-P., P. Tapponnier, (1993) Kinematic model of active deformation in Central Asia, Geophysical Research Letters, 20, 895–898.

    Google Scholar 

  • Avouac, J. P., E. B. Burov, (1996) Erosion as a driving mechanism of intracontinental mountain growth, J. Geophys. Res., 101(B8), 17,747–17,769.

    Google Scholar 

  • Basile, C., P. Allemand, (2002) Erosion and flexural uplift along transform faults, Geophys. J. Int. 151, 646–653

    Google Scholar 

  • Batchelor, G.K., (1967) An introduction to fluid dynamics, Cambridge University Press, p.615

    Google Scholar 

  • Beaumont, C., (1981) Foreland basins, R. Astr. Soc. Geophys. J., 65, 389–416.

    Google Scholar 

  • Beaumont, C., Fullsack, P., and J. Hamilton, Erosional control of active compressional orogens, Thrust Tectonics, Ed. K.R. McClay, Chapman & Hall, London, 1–31, 1992.

    Google Scholar 

  • Beaumont, C., Fullsack, P., and J. Hamilton, Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere, submitted to: Proceedings of 5th International Symposium on Seismic Reflection Probing of the Continents and their Margins, eds.: R. Clowes and A. Green, 1994.

    Google Scholar 

  • Beaumont, C., H. Kooi, and S. Willett, Coupled tectonic-surface process models with applications to rift ed margins and collisional orogens, in Geomorphology and Global Tectonics, edited by M. A. Summerfield, pp. 29–55, John Wiley, New York, 2000.

    Google Scholar 

  • Bonnet, S., and A. Crave, (2003) Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography, Geology, 31, 123–126.

    Google Scholar 

  • Braun, J., and M. Sambridge, Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization, Basin Res., 9, 27–52, 1997.

    Google Scholar 

  • Beekman, F., (1994) Tectonic modelling of thick-skinned compressional intraplate deformation, PhD thesis, Free University, Amsterdam.

    Google Scholar 

  • Bird, P., and A. J. Gratz, (1990) A theory for buckling of the mantle lithosphere and Moho during compressive detachments in continents, Tectonophysics, 177, 325–336.

    Google Scholar 

  • Bird, P., (1991) Lateral extrusion of lower crust from under high topography in the isostatic limit, J. Geophys. Res., 96, 10275–10286.

    Google Scholar 

  • Brace, W.F., and D.L. Kohlstedt, Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res., 85, 6248–6252, 1980.

    Google Scholar 

  • Byerlee, J. D., (1978) Friction of rocks. Pure Appl. Geophys., 116, 615–626.

    Google Scholar 

  • Burbank, D.W., Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin, Nature, 357, 680–683, 1992.

    Google Scholar 

  • Burbank, D. W., and J. Vergés, (1994) Reconstruction of topography and related depositional systems during active thrusting, J. Geophys. Res., 99, 20,281–20,297.

    Google Scholar 

  • Burov, E.V., M.G. Kogan, H. Lyon-Caen, and P. Molnar, Gravity anomalies, the deep structure, and dynamic processes beneath the Tien Shan, Earth Planet. Sci. Lett., 96, 367–383, 1990.

    Google Scholar 

  • Burov, E. B., and Diament, M., (1992) Flexure of the continental lithosphere with multilayered rheology, Geophys. J. Int., 109, 449–468.

    Google Scholar 

  • Burov, E. B., Lobkovsky, L.I., Cloetingh, S., and Nikishin, A. M., Continental lithosphere folding in Central Asia (part 2), constraints from gravity and topography, Tectonophysics, 226, 73–87, 1993.

    Google Scholar 

  • Burov, E.B., and S. Cloetingh, (1997) Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins, Earth and Planet Sci. Lett., 150, 7–26.

    Google Scholar 

  • Burov, E.B. and M Diament, (1995) The effective elastic thickness (Te) of continental lithosphere: What does it really mean? J. Geophys. Res., 100, 3905–3927.

    Google Scholar 

  • Burov, E.B., Jolivet, L., Le Pourhiet, L., and A. Poliakov, A thermemechanical model of exhumation of HP and UHP methamorphic rocks in Alpine mountain belts, Tectonophysics, 113–136, 2001.

    Google Scholar 

  • Burov, E., A.B. Watts, The long-term strength of continental lithosphere: “jelly-sandwich” or “crème-brûlé”?, GSA Today, 16, 1, doi: 10.1130/1052-5173(2006)016<4:TLTSOC, 2006.

    Google Scholar 

  • Carson, M.A., and M.J. Kirkby, (1972) Hillslope Form and Processes, Cambridge University Press, 475p.

    Google Scholar 

  • Carter, N.L., and M.C. Tsenn, (1987) Flow properties of continental lithosphere, Tectonophysics, 36, 27–63.

    Google Scholar 

  • Castelltort, S., and G. Simpson, (2006) Growing mountain ranges and quenched river networks, CRAS.

    Google Scholar 

  • Chen, Y., Cogne, J.P., Courtillot, V., Avouac, J.P., Tapponnier, P., Buffetaut, E., Wang., G., Bai., M., You, H., Li, M., and C. Wei, Paleomagnetic study of Mesozoic continental sediments along the northern Tien Shan (China) and heterogeneous strain in Central Asia, J. Geophys. Res., 96, 4065–4082, 1991.

    Google Scholar 

  • Chéry, J., Vilotte, J. P., and M. Daignieres, (1991) Thermomechanical evolution of a thinned continental lithosphere under compression: Implications for Pyrenees, J. Geophys. Res., 96, 4385–4412.

    Google Scholar 

  • Chorley R.J., S.A. Schumm, and D.E. Sugden, (1984) Hillsopes in Geomorpholgy, 255–339, Methuen, London.

    Google Scholar 

  • Cloetingh, S., Burov, E., Matenco L., Toussaint, G., and G. Bertotti, Thermo-mechanical constraints for the continental collision mode in the SE Carpathians (Romania), Earth and Planet Sci. Letters, 218(1–2), pp. 57–76, 2004.

    Google Scholar 

  • Copeland P. and T.M. Harrison, (1990) Episodic rapid uplift in the Himalya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal fan, Geology, 18, 354–357.

    Google Scholar 

  • Crave, A., and P. Davy, A stochastic “precipiton” model for simulating erosion/sedimentation dynamics, Comput. Geosci., 27, 815–827, 2001.

    Google Scholar 

  • Crave, A., D. Lague, P. Davy, J. Kermarrec, D. Sokoutis, L. Bodet, and R. Compagnon, Analogue modelling of relief dynamics, Phys. Chem. Earth, Part A, 25(6–7), 549–553, 2000.

    Google Scholar 

  • Culling, W.E.H., (1960) Analytical theory of erosion, Journal of Geology, 68, 336–333.

    Google Scholar 

  • Culling, W.E.H., (1965) Theory of erosion on soil-covered slopes, Journal of Geology, 73, 230–254.

    Google Scholar 

  • Cundall, P.A., (1989) Numerical experiments on localization in frictional material: Ingenieur-Archiv, v. 59, p. 148–159.

    Google Scholar 

  • Davies, G. F., (1994) Thermomechanical erosion of the lithosphere by mantle plumes, J. Geophys. Res., 99, 15709–15722.

    Google Scholar 

  • Davy, P., and A. Crave, (2000) Upscaling local-scale transport processes in largescale relief dynamics, Phys. Chem. Earth, Part A, 25(6–7), 533–541.

    Google Scholar 

  • Densmore, A. L., R. S. Anderson, B. G. McAdoo, and M. A. Ellis, Hillslope evolution by bedrock landslides, Science, 275, 369–372, 1997.

    Google Scholar 

  • Densmore, A. L., M. A. Ellis, and R. S. Anderson, Landsliding and the evolution of normal fault-bounded mountain ranges, J. Geophys. Res., 103(B7), 15,203–15,219, 1998.

    Google Scholar 

  • Ellis, S., Fullsack, P., and C. Beaumont; Oblique convergence of the crust driven by basal forcing: implications for lengths-cales of deformation and strain partitioning in orogens, Geophys. J. Int., 120, 24–44, 1995.

    Google Scholar 

  • England, P.C., and D.P. McKenzie, (1983) A thin viscous sheet model for continental deformation, Geophys. J. R. Astron. Soc., 73, 523–5323.

    Google Scholar 

  • England, P., and S. W. Richardson, The influence of erosion upon the mineral facies of rocks from different metamorphic environments, J. Geol. Soc. Lond., 134, 201–213, 1977.

    Google Scholar 

  • Flint, J. J., Experimental development of headward growth of channel networks, Geol. Soc. Am. Bull., 84, 1087–1094, 1973.

    Google Scholar 

  • Flint, J.-J., Stream gradient as a function of order magnitude, and discharge, Water Resour. Res., 10(5), 969–973, 1974.

    Google Scholar 

  • Fleitout, L., and C. Froidevaux, Tectonics and topography for a lithosphere containing density heterogeneities, Tectonics, 1, 21–56, 1982.

    Google Scholar 

  • Flemings, P. B., and T.E. Jordan, A synthetic stratigraphic model of foreland basin development, J. Geophys. Res., 94, 3851–3866, 1989.

    Google Scholar 

  • Flemings, P. B., and T.E. Jordan, Stratigraphic modelling of foreland basins: interpreting thrust deformation and lithosphere rheology, Geology, 18, 430–434, 1990.

    Google Scholar 

  • Fletcher, C.A.J., Computational techniques for fluid dynamics 2, Springer-Verlag, Berlin Heidelberg, 552 pp., 1988

    Google Scholar 

  • Fournier, F., Climat et Erosion: la relation entre l’érosion du sol par l’eau et les précipitations atmosphériques, Presse Universitaire de France, Paris, 201 pp, 1960.

    Google Scholar 

  • Gaspar-Escribano, J.M., Ter Voorde, M., Roca, E. and Cloetingh, S., Mechanical (de-)coupling of the lithosphere in the Valencia Through (NW Mediterranean): What does it mean? Earth and Planet Sci. Lett., 210, 291–303, 2003

    Google Scholar 

  • Garcia-Castellanos, D., Vergés, J., Gaspar-Escribano, J., and S. Cloetingh, Interplay between tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia), J. Geophys. Res., VOL. 108, NO. B7, 2347, doi:10.1029/2002JB002073, 2003

    Google Scholar 

  • Garcia-Castellanos, D., Interplay between lithospheric flexure and river transport in foreland basins, Basin Res., 14, 89–104, 2002.

    Google Scholar 

  • Garcia-Castellanos, D., M. Fernàndez, and M. Torne, Modeling the evolution of the Guadalquivir foreland basin (southern Spain), Tectonics, 21(3), 1018, doi::10.1029/2001TC001339, 2002.

    Google Scholar 

  • Gossman, H, Slope modelling with changing boundary conditions-effects of climate and lithology, Z. Geomoph. N.F., Suppl. Bd. 25, 72–88, 1976.

    Google Scholar 

  • Govers, G., Evaluation of transporting capacity formulae for overland flow, in Overland Flow: Hydraulics and Erosion Mechanics, edited by A. J. Parsons and A. D. Abrahams, pp. 243–273, UCL Press, London, 1992a.

    Google Scholar 

  • Govers, G., Relationship between discharge, velocity and flow area for rills eroding loose, non-layered materials, Earth Surf. Processes Landforms, 17, 515–528, 1992b.

    Google Scholar 

  • Gratton, J., Crustal shortening, root spreading, isostasy, and the growth of orogenic belts: a dimensional analysis, J. Geophys. Res., 94, 15627–15634, 1989.

    Google Scholar 

  • Gregory, K.M., and C. Chase, Tectonic and climatic significance of a late Eocene low-relief, high-level geomorphic surface, Colorado, J. Geophys. Res., 99, 20141–20160, 1994.

    Google Scholar 

  • Hamilton, J.M., Kim, J., and F. Waleffe, Regeneration mechanisms of near-wall turbulence structures, J. Fluid. Mech., 287, 317–348, 1995.

    Google Scholar 

  • Hanks, T.C., Buckham, R.C., LaJoie, K.R., and R.E. Wallace, Modification of wave-cut and fault-controlled landforms, J. Geophys. Res., 89, 5771–5790, 1984.

    Google Scholar 

  • Hansen, E.B., and M.A. Kelmanson, An integral equation justification of the boundary conditions of the driven-cavity problem, Computers & Fluids, 23,1, 225–240, 1994.

    Google Scholar 

  • Hairsine, P. B., and C. W. Rose, Modeling water erosion due to overland flow using physical principles, 1, Sheet flow, Water Resour. Res., 28(1), 237–243, 1992.

    Google Scholar 

  • Hancock, G., and G. Willgoose, Use of a landscape simulator in the validation of the SIBERIA catchment evolution model: Declining equilibrium landforms, Water Resour. Res., 37(7), 1981–1992, 2001.

    Google Scholar 

  • Hasbargen, L. E., and C. Paola, Landscape instability in an experimental drainage basin, Geology, 28(12), 1067–1070, 2000.

    Google Scholar 

  • Hendrix, M.S., Graham., S.A., Caroll, A.R., Sobel, E.R., McKnight, C.L., Schulein, B.J., and Z. Wang, Sedimentary record and climatic implications of recurrent deformation in the Tien Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China, Geol. Soc. of Am. Bull., 104, 53–79, 1992.

    Google Scholar 

  • Hendrix, M.S., T.A., Dumitru and S.A; Graham, Late Oligocene-early Miocene unroofing in the Chinese Tian Shan: An early effect of the India Asia collision, Geology, 487–490, 1994.

    Google Scholar 

  • Hirano, Simulation of developmental process of interfluvial slopes with reference to graded form, J. Geol, 83, 113–123, 1975.

    Google Scholar 

  • Howard, A. D., Long profile development of bedrock channels: Interaction of weathering, mass wasting, bed erosion and sediment transport, in Rivers Over Rock: Fluvial Processes in Bedrock Channels, Geophys. Monogr. Ser., vol. 107, edited by K. J. Tinkler and E. E. Wohl, pp. 297–319, AGU, Washington, D.C., 1998.

    Google Scholar 

  • Howard, A. D., W. E. Dietrich, and M. A. Seidl, Modeling fluvial erosion on regional to continental scales, J. Geophys. Res., 99(B7), 13,971–13,986, 1994.

    Google Scholar 

  • Huppert, H.E., The propagation of two dimensional and axisymmetric gravity currents over a rigid horizontal surface, J. Fluid. Mech., 121, 43–58, 1982.

    Google Scholar 

  • Hurtrez, J.-E., F. Lucazeau, J. Lavé, and J.-P. Avouac, Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, central Nepal, J. Geophys. Res., 104(B6), 12,779–12,796, 1999.

    Google Scholar 

  • Kaufman, P.S., and L.H. Royden, Lower crustal flow in an extensional setting: Constraints from the Halloran Hills region, eastern Mojave Desert, California, J. Geophys. Res., 99, 15723–15739, 1994.

    Google Scholar 

  • King, G.C.P., R.S. Stein and J.B. Rundle, The growth of geological structures by repeated earthquakes, 1. Conceptual framework, J. Geophys. Res., 93, 13307–13318, 1988.

    Google Scholar 

  • King, G., and Ellis, The origin of large local uplift in extensional regions, Nature, 348, 689–693, 1990.

    Google Scholar 

  • Kirby, S.H., Rheology of the lithosphere. Rev. Geophys., 21, 1458–1487, 1983.

    Google Scholar 

  • Kirby, S.H., and A.K. Kronenberg, Rheology of the lithosphere: Selected topics, Rev. of Geophys., 25, 1219–1244, 1987.

    Google Scholar 

  • Kirkby, M. J., Hillslope process-response models based on the continuity equation, Spec. Publ. Inst. Br. Geogr., 3, 15–30, 1971.

    Google Scholar 

  • Kirkby, M.J. A two-dimensional model for slope and stream evolution, in Abrahams, A.D. ed., Hillslope Processes: Boston, Allen and Unwin., 203–224, 1986

    Google Scholar 

  • Kirkby, M., Leeder, M., and N. White, The erosion of actively extending tilt-blocks: a coupled for topography and sediment budgets, application to the B&R, 13 pp., 1993.

    Google Scholar 

  • Koch, D.M., and D. L. Koch, Numerical and theoretical solutions for a drop spreading below a free fluid surface, J. Fluid Mech., 287, 251–278, 1995.

    Google Scholar 

  • Kohlstedt, D. L., Evans, B., and Mackwell; S. J., Strength of the lithosphere: Constraints imposed by laboratory experiments: Journal of Geophysical Research, 100, 17,587–17,602, 1995.

    Google Scholar 

  • Kooi, H., and C. Beaumont, Escarpment evolution on high-elevation rift ed margins: Insights derived from a surface processes model that combines diffusion, advection and reaction, J. Geophys. Res., 99, 12191–12209, 1994.

    Google Scholar 

  • Kooi, H., and C. Beaumont, Large-scale geomorphology: Classical concepts reconciled and integrated with contemporary ideas via a surface processes model, J. Geophys. Res., 101(B2), 3361–3386, 1996.

    Google Scholar 

  • Kruse, S., M. McNutt, J. Phipps-Morgan, and L. Royden, Lithospheric extension near lake Mead, Nevada: A model for ductile flow in the lower crust, J. Geophys. Res., 96(3), 4435–4456, 1991.

    Google Scholar 

  • Kusznir, N.J.; and D.H. Matthews, Deep seismic reflections and the deformational mechanics of the continental lithosphere, J. petrol., Spec. Lithosphere Issue, 63–87, 1988.

    Google Scholar 

  • Kusznir, N.J., The distribution of stress with depth in the lithosphere: thermo-rheological and geodynamic constraints, Phil. Trans. R. Soc. Lond., A337, 95–110, 1991.

    Article  Google Scholar 

  • Lague, D., P. Davy, and A. Crave, Estimating uplift rate and erodibility from the area-slope relationship: Examples from Brittany (France) and numerical modelling, Phys. Chem. Earth, Part A, 25(6–7), 543–548, 2000.

    Google Scholar 

  • Lague, D., A. Crave, and Ph. Davy, Laboratory experiments simulating the geomorphic response to tectonic uplift, J. Geophys. Res., VOL. 108, NO. B1, 2008, doi:10.1029/2002JB001785, 2003

    Google Scholar 

  • Lavé, J., and J. P. Avouac, Fluvial incision and tectonic uplift across the Himalayas of central Nepal, J. Geophys. Res., 106(B11), 26,561–26,591, 2001.

    Google Scholar 

  • Leeder, M.R., Denudation, vertical crustal movements and sedimentary basin infill, Geologische Rundschau, Stuttgart, 80,2, 441–458, 1991.

    Google Scholar 

  • Le Pourhiet L, Burov E, Moretti I., Rifting through a stack of inhomogeneous thrusts (the dipping pie concept), Tectonics, 23(4): TC4005, doi:10.1029/2003TC001584, 2004

    Google Scholar 

  • Lobkovsky, L.I., Geodynamics of Spreading and Subduction zones, and the two-level plate tectonics, Nauka, Moscow, 251 pp., 1988.

    Google Scholar 

  • Lobkovsky, L.I. and V.I. Kerchman, A two-level concept of plate tectonics: application to geodynamics. Tectonophysics, 199, 343–374, 1991.

    Google Scholar 

  • Luke, J.C., Mathematical models for landform evolution, J. Geophys. Res., 77, 2460–2464, 1972.

    Google Scholar 

  • Luke, J.C., Special Solutions for Nonlinear Erosion Problems, J. Geophys. Res., 79, 4035–4040, 1974.

    Google Scholar 

  • Ma, X., Lithospheric dynamic Atlas of China, China Cartographic Publishing House, Beijing, China, 1987.

    Google Scholar 

  • Makeyeva, L.I., L.P. Vinnik and S.W. Roecker, Shear-wave splitting and small scale convection in the continental upper mantle, Nature, 358, 144–147, 1992.

    Google Scholar 

  • Masek, J. G., Isacks, B. L., and E. J. Fielding, Rift flank uplift in Tibet: Evidence for a viscous lower crust, Tectonics, 13, 659–667, 1994a.

    Google Scholar 

  • Masek, J. G., Isacks, B. L., Gubbels, T.L., and E. J. Fielding, Erosion and tectonics at the margins of continental plateaus, J. Geophys. Res., 99, 13941–13956, 1994b.

    Google Scholar 

  • Metivier, F., and Y. Gaudemer, Mass transfer between eastern Tien Shan and adjacent basins (centralAsia): constraints on regionaltectonics and topography, Geophys. J. Int., 128, 1–17, 1997.

    Google Scholar 

  • Molnar, P., Climate change, flooding in arid environments, and erosion rates, Geology, 29(12), 1071–1074, 2001.

    Google Scholar 

  • Molnar, P. and Q. Deng, Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia, J. Geophys. Res., 89, 6203–6228, 1984

    Google Scholar 

  • Molnar, P., and H. Lyon-Caen, Some simple physical aspects of the support, structure, and evolution of mountain belts, in: Processes in continental lithospheric deformation, Geol. Soc. Am. Spec., Rap. 218, 179–207, 1988

    Google Scholar 

  • Molnar P., and Tapponnier, A possible dependence of the tectonic strength on the age of the crust in Asia, Earth Planet. Sci. Lett., 52, 107–114, 1981.

    Google Scholar 

  • Molnar, P., and P. England, Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg, Nature, 346, 29–34, 1990.

    Google Scholar 

  • Mizutani, T., Laboratory experiment and digital simulation of multiple fillcut terrace formation, Geomorphology, 24, 353–361, 1998.

    Google Scholar 

  • Nash, D.B., Morphologic dating of degraded normal fault scarps, J. Geol., 88, 353–360, 1980.

    Article  Google Scholar 

  • Newman, W.I., Nonlinear diffusion: Self-similarity and travelling-waves, PAGEOPH, 121,3, 417–441, 1983.

    Google Scholar 

  • Newman, W.I., and D.L. Turcotte, Cascade model for fluvial geomorphology, Geophys. J. Int., 100, 433–439, 1990.

    Google Scholar 

  • Parson, B., and J. Sclater, An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res., 93, 8051–8063, 1977.

    Google Scholar 

  • Patriat, P., and J. Achache, India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates, Nature, 311, 615–621, 1984.

    Google Scholar 

  • Pelletier, J.D., Persistent drainage migration in a numerical landscape evolution model. Geophys. Res. Lett., 31, doi:10.1029/2004GL020802, 2004.

    Google Scholar 

  • Persson, K.S., Garcia-Castellanos D., and D. Sokoutis, River transport effects on compressional belts: First results from an integrated analogue-numerical model, J. Geophys. Res., VOL. 109, B01409, doi:10.1029/2002JB002274, 2004

    Google Scholar 

  • Pinet, P., and M. Souriau, Continental erosion and large-scale relief, Tectonics, 7,3, 563–582, 1988.

    Google Scholar 

  • Ranalli, G., Rheology of the Earth: Chapman & Hall, Sec. Edition., London, 413 pp, 1995.

    Google Scholar 

  • Roecker, S.W., Sabitova, T.M., Vinnik, L.P., Burmakov, Y.A., Golvanov, M.I., Mamatkanova, R., and L. Minirova, Three dimensional elastic wave velocity structure of the western and central Tien Shan, J. Geophys., Res., 98, 15779–15795, 1993.

    Google Scholar 

  • Roering, J. J., J. W. Kirchner, L. S. Sklar, and W. E. Dietrich, Hillslope evolution by nonlinear creep and landsliding: An experimental study, Geology, 29(2), 143–146, 2001.

    Google Scholar 

  • Schmid, S. M., Pffifner, O. A., Schönborg, G., Froitzheim, N., and Kissling, E., Integrated cross-sections and tectonic evolution of the Alps along the Eastern Traverse. In: Deep structures of the Swiss Alps, O. A. Pffifner, P. Lehner, P. Heitzmann, S. Mueller and A. Steck (Editors), Birkhäuser, Basel, pp. 289–304, 1997.

    Google Scholar 

  • Schorghofer, N., and D. H. Rothman, Acausal relations between topographic slope and drainage area, Geophys. Res. Lett., 29(13), 1633, doi:10.1029/2002GL015144, 2002.

    Google Scholar 

  • Schumm, S. A., M. P. Mosley, and W. E. Weaver, Experimental Fluvial Geomorphology, John Wiley, New York, 1987.

    Google Scholar 

  • Seidl, M. A., and W. E. Dietrich, The problem of channel erosion into bedrock, Catena Suppl., 23, 101–124, 1992.

    Google Scholar 

  • Sheperd, R. G., and S. A. Schumm, Experimental study of river incision, Geol. Soc. Am. Bull., 85, 257–268, 1974.

    Google Scholar 

  • Simpson G., and F. Schlunegger, Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport, J. Geophys. Res., VOL. 108, NO. B6, 2300, doi:10.1029/2002JB002162, 2003

    Google Scholar 

  • Sklar, L., and W. E. Dietrich, River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply, in Rivers Over Rock: Fluvial Processes in Bedrock Channels, Geophys. Monogr. Ser., vol. 107, edited by K. J. Tinkler and E. E. Wohl, pp. 237–260, AGU, Washington, D.C., 1998.

    Google Scholar 

  • Sklar, L. S., and W. E. Dietrich, Sediment and rock strength controls on river incision into bedrock, Geology, 29(12), 1087–1090, 2001.

    Google Scholar 

  • Smith, C. E., Modeling high sinuosity meanders in a small flume, Geomorphology, 25, 19–30, 1998.

    Google Scholar 

  • Smith, T. R., and F. P. Bretherton, Stability and the conservation of mass in drainage basin evolution, Water Resour. Res., 8(6), 1506–1529, 1972.

    Google Scholar 

  • Snyder, N. P., Bedrock channel response to tectonic, climatic, and eustatic forcing, Ph.D thesis, Dep. of Earth, Atmos., and Planet. Sci., Mass. Inst. of Technol., Cambridge, Mass., 2001.

    Google Scholar 

  • Snyder, N. P., K. X. Whipple, G. E. Tucker, and D. J. Merritts, Landscape response to tectonic forcing: DEM analysis of stream profiles in the Mendocino triple junction region, northern California, Geol. Soc. Am. Bull., 112, 1250–1263, 2000.

    Google Scholar 

  • Simpson, G., Role of river incision in enhancing deformation. Geology 32 (2004), 341–344.

    Google Scholar 

  • Sobel E. and T. A. Dumitru, Exhumation of the margins of the western Tarim basin during the Himalayan orogeny, Tectonics, in press, 1995

    Google Scholar 

  • Stein, R.S., G.C.P. King and J.B. Rundle, The growth of geological structures by repeated earthquakes, 2. Field examples of continental dip-slip faults, J. Geophys. Res., 93, 13319–13331, 1988.

    Google Scholar 

  • Summerfield, M.A. and N.J. Hulton, Natural control on fluvial denudation rates in major world drainage basins, J. Geophys. Res., 99, 13871–13883, 1994.

    Google Scholar 

  • Talbot, C.J., and R.J. Jarvis, Age, budget and dynamics of an active salt extrusion in Iran, J. Struct. Geology, 6, 521–533, 1984.

    Google Scholar 

  • Tapponnier, P., and P. Molnar, Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia and Baykal regions, J. Geophys. Res., 84, 3425–3459, 1979.

    Google Scholar 

  • Ter Voorde, M., Van Balen, R.T., Bertotti, G. and Cloetingh, S.A.P.L., The influence of a stratified rheology on the flexural response of the lithosphere to (un)loading by extensional faulting. Geophys. J. Int., 134, 721–735, 1998.

    Google Scholar 

  • Toussaint, G., Burov, E., and L. Jolivet, Continental plate collision: unstable versus stable slab dynamics, Geology, 32, No. 1, 33–36, 2004a.

    Google Scholar 

  • Toussaint G., Burov, E., and J.-P. Avouac, Tectonic evolution of a continental collision zone: a thermo mechanical numerical model, Tectonics, 23, TC6003, doi:10.1029/ 2003TC001604, 2004b.

    Google Scholar 

  • Tsenn, M.C., and N.L. Carter, Flow properties of continental lithosphere. Tectonophysics, 136, 27–63, 1987.

    Google Scholar 

  • Tucker, G. E., and R. L. Bras, Hillslope processes, drainage density, and landscape morphology, Water Resour. Res., 34(10), 2751–2764, 1998.

    Google Scholar 

  • Tucker, G. E., and R. L. Bras, A stochastic approach to modeling the role of rainfall variability in drainage basin evolution, Water Resour. Res., 36(7), 1953–1964, 2000

    Google Scholar 

  • Turcotte, D.L., and G. Schubert, Geodynamics. Applications of continuum physics to geological problems, J. Wiley & Sons, New York, 450 p., 1982.

    Google Scholar 

  • Vinnik, L.P. and A.M. Saipbekova, Structure of the lithosphere and asthenosphere of the Tien Shan, Annales Geophysicae, 621–626, 1984.

    Google Scholar 

  • Vinnik, L.P., I. M. Aleshin, M. K. Kaban, S. G. Kiselev, G. L. Kosarev, S. I. Oreshin, and Ch. Reigber, Crust and Mantle of the Tien Shan from Data of the Receiver Function Tomography, Izvestiya, Physics of the Solid Earth, 42, pp. 639–651, Pleiades Publishing, Inc., 2006.

    Google Scholar 

  • Vilotte, J.P., M. Daignières and R. Madariaga, Numerical modeling of intraplate deformation: simple mechanical models of continental collision, J. Geophys. Res., 87, 10709–10728, 1982.

    Article  Google Scholar 

  • Vogt, P.R., Bermuda and Applachian-Labrador rises, common hotspot processes, Geology, 19, 41–44, 1991.

    Google Scholar 

  • Wang J.N., B.E. Hobbs, A. Ord, T. Shimamoto, and M. Toriumi, Newtonian dislocation creep in quartzites: Implications for the rheology of the lower crust, Science, 265, 1204–1206

    Google Scholar 

  • Westaway, R., Evidence for dynamic coupling of surface processes with isostatic compensation in the lower crust during active extension of western Turkey, J. Geophys. Res., 99, 20203–20223, 1994.

    Google Scholar 

  • Willett, S. D., Orogeny and orography: The effects of erosion on the structure of mountain belts, J. Geophys. Res., 104(B12), 28,957–28,982, 1999.

    Google Scholar 

  • Windley, B. F., M.B. Allen, C., Zhang, Z.Y., Zhao, and G.R. Wang, Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, central Asia, Geology, 18, 128–131, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burov, E. (2007). Coupled Lithosphere-Surface Processes in Collision Context. In: Lacombe, O., Roure, F., Lavé, J., Vergés, J. (eds) Thrust Belts and Foreland Basins. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69426-7_1

Download citation

Publish with us

Policies and ethics