Skip to main content

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Atmospheric aerosol is a suspension of liquid and solid particles, with radii varying from a few run to larger than 100μm, in air. The particles can be directly emitted into the atmosphere (e.g., sea spray aerosol, dust, biomass or fossil fuel burning aerosol, volcanic ash, primary organic aerosol) or produced from precursor gases (e.g., sulfates, nitrates, ammonium salts, secondary organic aerosol). The total aerosol mass is dominated by aerosols produced from the surface due to natural processes such as the action of the wind (sea spray aerosol, desert dust). However, anthropogenic emissions of both primary particles and precursor gases contribute significantly to the total aerosol load [Andreae and Rosenfeld, 2008].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, S. A., K. I. Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley L. E., 1998, Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32, 141–32, 157.

    Google Scholar 

  • Andreae, M.O., and Rosenfeld, D., 2008: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89, 13–41.

    Article  Google Scholar 

  • Collins, W.D., Rasch, P.J., Eaton, B.E., Khattatov, B.V, Lamarque, J.-F, and Zender, C.S., 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: methodology for INDOEX. J. Geophys. Res., 106, 7313–7336.

    Article  Google Scholar 

  • Cairns, B., Russell, E.E., and Travis, L.D., 1999: The Research Scanning Polarimeter: calibration and ground-based measurements, Proc. SPIE, 3754, 186–197.

    Article  Google Scholar 

  • Charlson, R.J., and Heintzenberg, J., 1995: Aerosol Forcing of Climate, Chichester: John Wiley.

    Google Scholar 

  • Curier, R.L., Veefkind, J.P., Braak, R., Veihelmann, B., Torres, O., and de Leeuw, G., 2008: Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe. J. Geophys. Res., 113 doi:10.1029/2007JD008738.

    Google Scholar 

  • De Almeida Castanho, A.D., Vanderlei Martins, T, and Artaxo, P., 2008: MODIS aerosol optical depth retrievals with high spatial resolution over an urban area using the critical reflectance, J. Geophys. Res., 113, D02201, doi: 10.1029/2007JD008751.

    Google Scholar 

  • De Haan, J.F., Bosma, P.B., and Hovenier, J.W., 1987: The adding method for multiple scattering calculations of polarized light, Astronomy Astrophysics, 183, 371–391.

    Google Scholar 

  • Deschamps, P.Y., Breon, F.M., Leroy, M., Podaire, A., Bricaud, A., Buriez, J.C., and Seze, G., 1994: The POLDER Mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32, 598–615.

    Article  Google Scholar 

  • Deuzé, J.L., Bréon, F.-M., Devaux, C, Goloub, Herman, M., Lafrance, B., Maignan, F, Marchand, A., Nadal, F, Perry, G., and Tanré, D., 2001: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res., 106(D5), 4913–4926.

    Article  Google Scholar 

  • Diner, D.J., Beckert, J.C., Reilly, TH., Bruegge, Cl, Conel, J.E., Kahn, R., Martonchik, J.V., Ackerman, T.P., Davies, R., Gerstl, S.A.W., Gordon, H.R., Muller, J.-P., Myneni, R., Sellers, J., R. Pinty, B., and Verstraete, M.M., 1998: Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens., 36, 1072–1087.

    Article  Google Scholar 

  • Diner, D.J., Martonchik, J.V., Kahn, R.A., Pinty, B., Gobron, N., Nelson, D.L., and Holben, B.N., 2005: Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sens. Environ., 94, 155–171.

    Article  Google Scholar 

  • Dubovik, O., Holben, B.N., Eck, T.F, Smirnov, A., Kaufman, Y.J., King, M.D., Tanré, D., Slutsker, I., 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sciences, 59, 590–608.

    Article  Google Scholar 

  • Flowerdew, R.J., and Haigh, J.D., 1995: An approximation to improve accuracy in the derivation of surface reflectances from multi-look satellite radiometers. Geophys. Res. Lett, 22, 1693–1696.

    Article  Google Scholar 

  • Geogdzhyev, I., Mishchenko, M., Rossow, W., Cairns, B., and Lacis, A., 2002: Global 2-channel AVHRR retrieval of aerosol properties over the ocean for the period of NOAA-9 observations and preliminary retrievals using NOAA-7 and NOAA-11 data, J.Atmos.Sci., 59, 262–278.

    Article  Google Scholar 

  • Grey, W.M.F., North, P.R.J., Los, S.O., Mitchell, R.M., 2006: Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: global validation and intersensor comparisons. IEEE Trans. Geosci. Remote Sens., 44, 2184–2197.

    Article  Google Scholar 

  • Griggs, M., 1975: Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. J. Air Pollut. Control. Assoc, 25, 622–626.

    Google Scholar 

  • Hasekamp, O.P., and Landgraf, J., 2005: Retrieval of aerosol properties over the ocean from multispectral single-viewing-angle measurements of intensity and polarization: retrieval approach, information content, and sensitivity study. J. Geophys. Res., 110, D20207, doi:10.1029/2005JD006212.

    Article  Google Scholar 

  • Hauser, A., Oesch, D., Foppa, N., and Wunderle, S., 2005: NOAA AVHRR derived aerosol optical depth over land. J. Geophys. Res., 110, D08204, doi:10.1029/2004JD005439.

    Article  Google Scholar 

  • Holben, B., Eck, T., Slutsker, I., Tanre, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenau, F, Jankowiak, I. and Smirnov, A.: AERONET, a federated instrument network and data-archive for aerosol characterization, Rem.Sens.Environ., 66, 1–66, 1998

    Article  Google Scholar 

  • Höller, R., Holzer-Popp, T., Garnesson, P., and Nagl, C., 2007: Using satellite aerosol products for monitoring national and regional air quality in Austria. Proc. ‘Envisat Symposium 2007’, Montreux, Switzerland, 23–27 April 2007 (ESA SP-636).

    Google Scholar 

  • Hsu, N.C., Tsay, S.C., King, M.D., and Herman, J.R., 2004: Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens., 42, 557–569.

    Article  Google Scholar 

  • Hsu, N.C., Tsay, S.C., King, M.D., and Herman, J.R., 2006: Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens., 44, 3180–3195.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Sdence Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K.M.B., Tignor, M., Miller, H.L., and Chen, Z. (eds.)]. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Jin, Y., Schaaf, C.B., Woodcock, C.E., Gao, F., Li, X., Strahler, A.H., Lucht, W, and Liang, S., 2003a: Consistencey of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 1. Algorithm performance. J. Geophys. Res., 108(D5), doi:10.1029/2002JD002803.

    Google Scholar 

  • Jin, Y., Schaaf, C.B., Woodstock, C.E., Gao, F, Li, X., Strahler, A.H., Lucht, W and Liang, S., 2003b: Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation. J. Geophys. Res., 108(D5). doi:10.1029/2002JD002804.

    Google Scholar 

  • Kahn, R.A., Li, W.-H., Moroney, D., Diner, D.J., Martonchik, J.V., and Fishbein, E., 2007: Aerosol source plume physical characteristics from space-based multiangle imaging. J. Geophys. Res., 112, D11205, doi: 10.1029/2006JD007647.

    Article  Google Scholar 

  • Kahn R.A., Chen, Y., Nelson, D.L., Leung, F.-Y, Li, Q., Diner, D.J., Logan, J.A., 2008: Wildfire smoke injection heights: two perspectives from space, Geophys. Res. Lett., 35, L04809, doi:10.1029/2007GL032165.

    Article  Google Scholar 

  • Kaufman, Y.J., Tanré, D., Remer, L.A., Vermote, E.F, Chu, A., and Holben, B.N., 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectrora-diometer. J. Geophys. Res., 102(D14), 17,051–17,067.

    Article  Google Scholar 

  • Kaufman, Y, Smirnov A., Holben B., and Dubovik O., 2001: Baseline maritime aerosol: methodology to derive the optical thickness and scattering properties, Geophys. Res. Lett., 28, 3251–3254.

    Article  Google Scholar 

  • Kaufman, Y.J, Tanré, D., and Boucher, O., 2002: A satellite view of aerosols in the climate system. Nature 419, 215–223.

    Article  Google Scholar 

  • King, M.D., Kaufman Y.J., Tanré, D., and Nakajima, T., 1999: Remote sensing of tropospheric aerosols from space: past, present, and future. Bull. Amer. Meteor. Soc, 80, 2229–2260.

    Article  Google Scholar 

  • Knapp, K.R., 2002: Quantification of aerosol signal in GOES 8 visible imagery over the United States, J. Geophys. Res., 107, doi 10.1029/2001JD002001.

    Google Scholar 

  • Koelemeijer, R.B.A., de Haan, J.F., and Stammes, P., 2003: A database of spectral surface reflectivity in the range 335-772 nm derived from 5.5 years of GOME observations, J. Geophys. Res., 108(D2), doi: 10.1029/2002JD002429.

    Google Scholar 

  • Kokhanovsky, A.A., 2008: Aerosol Optics, Berlin: Springer-Praxis.

    Google Scholar 

  • Kokhanovsky, A.A., Hoyningen-Huene, W, Bovensmann, H., and Burrows J.P., 2004: The determination of the atmospheric optical thickness over Western Europe using SeaWiFS imagery, IEEE Trans. Geosci. Remote Sens., 42, 824–832.

    Article  Google Scholar 

  • Kokhanovsky, A.A., Mayer, B., and Rozanov, V.V., 2005: A parameterization of the diffuse transmittance and reflectance for aerosol remote sensing problems, Atmos. Res., 73, 37–43.

    Article  Google Scholar 

  • Kokhanovsky, A.A., von Hoyningen-Huene, W., and Burrows, J.P., 2006: Atmospheric aerosol load as derived from space, Atmos. Res., 81, 176–185.

    Article  Google Scholar 

  • Kokhanovsky, A.A., Breon, F.-M., Cacciari, A., Carboni, E., Diner, D., Di Nicolantonio, W., Grainger, R.G., Grey, W.M.F., Höller, R., Lee, K.-H., Li, Z., North, P.R.J., Sayer, A.M., Thomas, G.E., and von Hoyningen-Huene, W., 2007, Aerosol remote sensing over land: a comparison of satellite retrievals using different algorithms and instruments, Atmospheric Research, 85, 372–394.

    Article  Google Scholar 

  • Kokhanovsky, A.A., Curier, R.L., de Leeuw, G., Grey, W.M.F., Lee, K.-H., Bennouna, Y., Schoemaker, R., and North, P.R.J., 2009: The inter-comparison of AATSR dual view aerosol optical thickness retrievals with results from various algorithms and instruments, Int. J. Remote Sensing (forthcoming).

    Google Scholar 

  • Kotchenova, S.Y., Vermote, E.F., Levy, R., and Lyapustin, A., 2008: Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study, Appl. Optics, 47, 2215–2226.

    Article  Google Scholar 

  • Kusmierczyk-Michulec, J., and de Leeuw, G., 2005: Aerosol optical thickness retrieval over land and water using Global Ozone Monitoring Experiment (GOME) data, J. Geophys. Res., 110, D10S05, doi: 10.1029/2004JD004780.

    Article  Google Scholar 

  • Lee, K.H., Li, Z., Kim, Y.J., and Kokhanovsky, A.A., 2009: Aerosol monitoring from satellite observations: a history of three decades, Atmospheric and Biological Environmental Monitoring, Y.J. Kim, U. Platt, M.B. Gu, and H. Iwahashi (eds.), Berlin: Springer (in press).

    Google Scholar 

  • Levy, R.C., Remer, L.A., and Dubovik, O., 2007a: Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res., 112, D13210, doi:10.1029/2006JD007815.

    Article  Google Scholar 

  • Levy, R.C., Remer, L.A., Mattoo, S., Vermote, E.F., and Kaufman, Y.J., 2007b: Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res., 112, D13211, doi:10.1029/ 2006JD007811.

    Article  Google Scholar 

  • Liu, L., and Mishchenko, M.I., 2008: Toward unified satellite climatology of aerosol properties: direct comparisons of advanced level 2 aerosol products, J. Quant. Spectr. Rad. Transfer, 109, 2376–2385.

    Article  Google Scholar 

  • Marshak A., G. Wen, J. A. Coakley Jr., L. A. Remer, N. G. Loeb, R. F Cahalan, 2008: A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds, J. Geophys. Res., 113, D14S17, doi:10.1029/2007JD009196.

    Article  Google Scholar 

  • Martonchik, J.V, Diner, D.J., Kahn, R.A., Ackerman, T.P., Verstraete, M.M., Pinty, B., and Gordon, H.R., 1998: Techniques fot the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Trans. Geosci. Remote Sens., 36, 1212–1227.

    Article  Google Scholar 

  • McCormick, M.P., Hamill, P., Pepin, P.J., Chu, W.P., Swissler, T.J., and McMaster, L.R., 1979: Satellite studies of the Stratospheric aerosol, Bull. American Meteorol. Soc, 60(9), 1038–1046.

    Article  Google Scholar 

  • Mekler, Y., Quenzel H., Ohring G., and Marcus I., 1977: Relative atmospheric aerosol content from ERS observations. J. Geophys. Res., 82, 967–972.

    Article  Google Scholar 

  • Mishchenko, M.I., Geogdzhayev, I.V., Rossow, W.B., Cairns, B., Carlson, B.E., Lacis, A.A., Liu, L., and Travis, L.D., 2007a: Long-term satellite record reveals likely recent aerosol trend. Science, 315(5818), 1543. [DOI: 10.1126/science. 1136709].

    Article  Google Scholar 

  • Mishchenko, M.I., Cairns, B., Kopp, G., Schueler, CF., Fafaul, B.A., Hansen, J.E., Hooker, R.J., Itchkawich, T., Maring, H.B., and Travis, L.D., 2007b: Precise and accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory mission. Bull. Amer. Meteorol. Soc, 88, 677–691, doi: 10.1175/BAMS-88-5-677.

    Article  Google Scholar 

  • Nakajima, T.Y, T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama, M. Kishino, 1998: Optimization of the Advanced Earth Observing Satellite II Global Imager Channels by use of Radiative Transfer Calculations, Appl. Optics, 37, 3149–3163.

    Article  Google Scholar 

  • Nakajima, T., T. Y. Nakajima, M. Nakajima, and the GLI Algorithm Integration Team (GAIT), 1999: Development of ADEOS-II/GLI operational algorithm for earth observation, SPIE Proceedings, 3870, 314–322.

    Article  Google Scholar 

  • Nikolaeva, O. V, L. P. Bass, T. A. Germogenova, A. A. Kokhanovsky, V. S. Kuznetsov, B. Mayer, 2005: The influence of neighboring clouds on the clear sky reflectance studied with the 3-D transport code RA-DUGA, J. Quant. Spectr. Rad. Transfer, 94, 405–424.

    Article  Google Scholar 

  • North, P.R.J., Briggs, S.A., Plummer, S.E., and Settle, J.J., 1999: Retrieval of land surface bi-directional reflectance and aerosol opacity from ATSR-2 multi-angle imagery, IEEE Trans. Geosci. Remote Sens., 37(1), 526–537.

    Article  Google Scholar 

  • Remer, L.A., and Kaufman, Y.J., 2006: Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data, Atmos. Chem. Phys., 6, 237–253.

    Google Scholar 

  • Rozanov, V.V, and Kokhanovsky, A.A., 2006: The solution of the vector radiative transfer equation using the discrete ordinates technique: selected applications, Atmos. Res., 79, 241–265.

    Article  Google Scholar 

  • Santer, R., Carrere, V, Dubuisson, P., and Roger, J.-C, 1999: Atmospheric corrections over land for MERIS, Int. J. of Remote Sens., 20, 1819–1840.

    Article  Google Scholar 

  • Santer, R., Carrere, V, Dessailly, D., Dubuisson, P., and Roger, J.-C, 2000: MERIS ATBD 2.15: Algorithm theoretical basis document, atmospheric correction over land. Technical report POTN-MEL-GS-0005, LISE.

    Google Scholar 

  • Schaap, M., Apituley, A., Timmermans, R.M.A., Koelemeijer, R.B.A., and de Leeuw, G., 2009: Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, The Netherlands. Atmos. Chem. Phys., 9, 909–925.

    Google Scholar 

  • Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K., 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Optics, 27, 2502–2509.

    Article  Google Scholar 

  • Stowe, L.L., Jacobowitz, H., Ohring, G., Knapp, K.R., and Nalli, N.R., 2002: The Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) climate dataset: initial analyses and evaluations, J. Clim., 15, 1243–1260.

    Article  Google Scholar 

  • Torres, O., Bhartia, P.K., Herman, J.R., Ahmad, Z., and Gleason, J., 1998: Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation. Theoretical basis. J. Geophys. Res., 103, 17,099–17,110.

    Article  Google Scholar 

  • Torres, O., Bhartia, P.K., Herman, J.R., Sinyuk, A., Ginoux, P., and Holben, B., 2002a: A long term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements, J. Atm. Sci, 59, 398–413.

    Article  Google Scholar 

  • Torres, O., Decae, R., Veefkind, J.P., and de Leeuw, G., 2002b: OMI aerosol retrieval algorithm. In: P. Stammes and R. Noordhoek (eds.), OMI Algorithm Theoretical Basis Document, Vol. III: Clouds, Aerosols and Surface UV Irradiance, ATBD-OMI-03, 46–71.

    Google Scholar 

  • Tynes H.H., Kattawar, G.W., Zege, E.P., Katsev, I.L., Prikhach, A.S., and Chaikovskaya, L.I., 2001: Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations, Appl. Opt., 40, 400–412.

    Article  Google Scholar 

  • Veefkind, J.P., and de Leeuw, G., 1998: A new algorithm to determine the spectral aerosol optical depth from satellite radiometer measurements. J. Aerosol Sci., 29, 1237–1248.

    Article  Google Scholar 

  • Veefkind, J.P., de Leeuw, G., and Durkee, P.A., 1998: Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX. Geophys. Res. Lett., 25(16), 3135–3138.

    Article  Google Scholar 

  • Veihelmann, B., Levelt, P.F., Stammes, P., and Veefkind, J.P., 2007: Simulation study of the aerosol information content in OMI spectral reflectance measurements. Atmos. Chem. Phys., 7, 3115–3127.

    Article  Google Scholar 

  • Verver, G.H.L., Henzing, J.S., de Leeuw, G., Robles Gonzalez, C, and van Velthoven, P.F.J., 2002: Aerosol retrieval and assimilation (ARIA). Final report Phase 1, NUSP-2, 02-09, KNMI-publication: 200.

    Google Scholar 

  • Vidot J,, Santer, R., and Aznay, O., 2008: Evaluation of the MERIS aerosol product over land with AERONET. Atmos. Chem. Phys., 8, 7603–7617.

    Google Scholar 

  • von Hoyningen-Huene, W., Freitag, M., Burrows, J.B., 2003: Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance. J. Geophys. Res., 108, 4260. doi:10.1029/ 2001JD002018.

    Article  Google Scholar 

  • von Hoyningen-Huene, W., Kokhanovsky, A.A., Burrows, J.B., Bruniquel-Pinel, V, Regner, P., Baret, F., 2006: Simultaneous determination of aerosol-and surface characteristics from top-of-atmosphere reflectance using MERIS on board ENVISAT, Adv. Space Res., 37, 2172–2177.

    Article  Google Scholar 

  • von Hoyningen-Huene, W., Kokhanovsky, A.A., Burrows, T.P., 2008: Retrieval of particulate matter from MERIS observations, in Y.T. Kim, V Platt (Eds), Advanced Environmental Monitoring, Berlin: Springer, pp. 190–202.

    Google Scholar 

  • Wen G., A. Marshak, R. F. Cahalan, 2008: Importance of molecular Rayleigh scattering in the enhancement of clear sky reflectance in the vicinity of boundary layer cumulus clouds, J. Geophys. Res., 113, D24207, doi:10.1029/2008JD010592.

    Article  Google Scholar 

  • Winker, D.M., Pelon, J.R., and McCormick, M.P., 2003: The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds, Proc. of SPIE, 4893, 1–11.

    Article  Google Scholar 

  • Winker D.M., Hunt, W.H., and McGill, M.J., 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett, 34, L19803, doi:10.1029/2007GL030135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

de Leeuw, G., Kokhanovsky, A.A. (2009). Introduction. In: Kokhanovsky, A.A., de Leeuw, G. (eds) Satellite Aerosol Remote Sensing over Land. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69397-0_1

Download citation

Publish with us

Policies and ethics