Skip to main content

Reconstructing Cortical Networks: Case of Directed Graphs with High Level of Reciprocity

  • Chapter

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 18))

Abstract

The problem of prediction of yet uncharted connections in the large scale network of the cerebral cortex is addressed. Our approach was determined by the fact that the cortical network is highly reciprocal although directed, i.e. the input and output connection patterns of vertices are slightly different. In order to solve the problem of predicting missing connections in the cerebral cortex, we propose a probabilistic method, where vertices are grouped into two clusters based on their outgoing and incoming edges, and the probability of a connection is determined by the cluster affiliations of the vertices involved. Our approach allows accounting for differences in the incoming and outgoing connections, and is free from assumptions about graph properties. The method is general and applicable to any network for which the connectional structure is mapped to a sufficient extent. Our method allows the reconstruction of the original visual cortical network with high accuracy, which was confirmed after comparisons with previous results. For the first time, the effect of extension of the visual cortex was also examined on graph reconstruction after complementing it with the subnetwork of the sensorimotor cortex. This additional connectional information further improved the graph reconstruction. One of our major findings is that knowledge of definitely nonexistent connections may significantly improve the quality of predictions regarding previously uncharted edges as well as the understanding of the large scale cortical organization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Achard and E. Bullmore, Efficiency and cost of economical brain functional networks, PLoS Comp. Biol., 3(2) (2007), e17.

    Article  Google Scholar 

  2. H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat. Contr., 19(6) (1974), 716–723.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Andrieu, N. de Freitas, A. Doucet and M. I. Jordan, An introduction to MCMC for machine learning, Mach Learn, 50 (2003), 5–43.

    Article  MATH  Google Scholar 

  4. A. Angelucci and J. Bullier, Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? J. Physiol., 97(2–3) (2003), 141–54.

    Google Scholar 

  5. M. A. Arbib and P. Érdi, Précis of Neural organization: structure, function and dynamics, Behav. Brain Sci., 23(4) (2000), 513–33, Discussion: pp. 533–71.

    Article  Google Scholar 

  6. E. Bienenstock, On the dimensionality of cortical graphs, J. Physiol., 90(3–4) (1996), 251–6.

    Google Scholar 

  7. V. Braitenberg and A. Schüz, Cortex: Statistics and Geometry of Neuronal Connectivity, Springer (1998).

    Google Scholar 

  8. S. L. Bressler and E. Tognoli, Operational principles of neurocognitive networks, Int. J. Psychophysiol., 60(2) (2006), 139–48.

    Article  Google Scholar 

  9. P. Buzás, K. Kovács, A. S. Ferecskó, J. M. Budd, U. T. Eysel and Z. F. Kisvárday, Model-based analysis of excitatory lateral connections in the visual cortex, J. Comp. Neurol., 499(6) (2006), 861–81.

    Article  Google Scholar 

  10. G. Buzsáki, C. Geisler, D. A. Henze and X. J. Wang, Interneuron diversity series: Circuit complexity and axon wiring economy of cortical interneurons, Trends Neurosci, 27(4) (2004), 186–93.

    Article  Google Scholar 

  11. W. H. Calvin, Cortical columns, modules and Hebbian cell assemblies, in: M. A. Arbib, editor, Handbook of Brain Theory and Neural Networks, Bradford Books/MIT Press (1995), pages 269–272.

    Google Scholar 

  12. F. R. K. Chung, Laplacians and the Cheeger inequality for directed graphs, Ann. Combinator, 9 (2005), 1–19.

    Article  MATH  Google Scholar 

  13. A. Clauset, C. Moore and M. E. J. Newman, Structural inference of hierarchies in networks, in: Proceedings of the 23rd International Conference on Machine Learning (ICML), June 2006.

    Google Scholar 

  14. G. Csárdi and T. Nepusz, The igraph software package for complex network research, InterJournal Complex Systems, (2006), page 1695.

    Google Scholar 

  15. L. da Fontoura Costa, M. Kaiser and C. C. Hilgetag, Predicting the connectivity of primate cortical networks from topological and spatial node properties, BMC Syst. Biol., 1(16) (2007).

    Google Scholar 

  16. L. Danon, J. Duch, A. Diaz-Guilera and A. Arenas, Comparing community structure identification, J. Stat. Mech. (Oct. 2005), page P09008.

    Google Scholar 

  17. J. DeFelipe, L. Alonso-Nanclares and J. I. Arellano, Microstructure of the neocortex: comparative aspects, J. Neurocytol, 31(3–5) (2002), 299–316.

    Article  Google Scholar 

  18. R. J. Douglas and K. A. Martin, Mapping the matrix: the ways of neocortex, Neuron, 56(2) (2007), 226–38.

    Article  Google Scholar 

  19. G. M. Edelman, Neural Darwinism: selection and reentrant signaling in higher brain function, Neuron, 10(2) (1993), 115–25.

    Article  MathSciNet  Google Scholar 

  20. D. J. Felleman and D. C. Van Essen, Distributed hierarchical processing in the primate cerebral cortex, Cerebr. Cortex, 1(1) (1991), 1–47.

    Article  Google Scholar 

  21. A. L. N. Fred and A. K. Jain, Robust data clustering, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 128–133. IEEE (2003). DOI 10.1109/CVPR.2003.1211462.

    Google Scholar 

  22. W. J. Freeman, Mesoscopic neurodynamics: from neuron to brain, J. Physiol., 94(5–6) (2000), 303–22.

    Google Scholar 

  23. S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans Pattern Anal Mach Intell, 6 (1984), 721–741.

    Article  MATH  Google Scholar 

  24. W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57(1) (1970), 97–109. DOI 10.2307/2334940.

    Article  MATH  Google Scholar 

  25. C. C. Hilgetag, G. A. Burns, M. A. O’Neill, J. W. Scannell and M. P. Young, Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 355(1393) (2000), 91–110.

    Article  Google Scholar 

  26. C. C. Hilgetag and S. Grant, Uniformity, specificity and variability of corticocortical connectivity, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 355(1393) (2000), 7–20.

    Article  Google Scholar 

  27. C. C. Hilgetag, M. A. O’Neill and M. P. Young, Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 355(1393) (2000), 71–89.

    Article  Google Scholar 

  28. A. A. Ioannides, Dynamic functional connectivity, Curr. Opin. Neurobiol, 17 (2007), 161–70.

    Article  Google Scholar 

  29. B. Jouve, P. Rosenstiehl and M. Imbert, A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey, Cerebr. Cortex, 8(1) (1998), 28–39.

    Article  Google Scholar 

  30. J. H. Kaas, Organizing principles of sensory representations, Novartis Foundation Symposium, 228 (2000), 188–198.

    Article  Google Scholar 

  31. M. Kaiser, Brain architecture: a design for natural computation, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 365(1861) (2007), 3033–45.

    MathSciNet  Google Scholar 

  32. M. Kaiser and C. C. Hilgetag, Modelling the development of cortical systems networks, Neurocomputing, 58–60 (2004), 297–302.

    Article  Google Scholar 

  33. M. Kaiser and C. C. Hilgetag, Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems, PLoS. Comp. Biol., 2(7) (2006), e95.

    Article  Google Scholar 

  34. Z. F. Kisvárday, A. S. Ferecskó, K. Kovács, P. Buzás, B. J. M. and U. T. Eysel, One axon-multiple functions: specificity of lateral inhibitory connections by large basket cells, J. Neurocytol., 31(3–5) (2002), 255–64.

    Article  Google Scholar 

  35. J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph theory, in: D. Miklós, V. T. Sós and T. Szőnyi, editors, Combinatorics, Paul Erdős is Eighty, Vol. 2, János Bolyai Mathematical Society, Budapest (1996), pages 295–352.

    Google Scholar 

  36. R. Kötter, Online retrieval, processing and visualization of primate connectivity data from the cocomac database, Neuroinformatics, 2 (2004), 127–144.

    Article  Google Scholar 

  37. R. Kötter and K. E. Stephan, Network participation indices: characterizing component roles for information processing in neural networks, Neural Network, 16(9) (2003), 1261–75.

    Article  Google Scholar 

  38. S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79–86.

    Article  MATH  MathSciNet  Google Scholar 

  39. M. Latapy and P. Pons, Computing communities in large networks using random walks, J. Graph Algorithm Appl., 10(2) (2006), 191–218.

    MATH  MathSciNet  Google Scholar 

  40. L. Lee, K. Friston and B. Horwitz, Large-scale neural models and dynamic causal modelling, NeuroImage, 30 (2006), 1243–54.

    Article  Google Scholar 

  41. J. W. Lewis and D. C. Van Essen, Corticocortical connections of visual, sensorimotor and multimodal processing areas in the parietal lobe of the macaque monkey, J. Comp. Neurol., 428 (2000), 112–137.

    Article  Google Scholar 

  42. R. Montenegro and P. Tetali, Mathematical aspects of mixing times in Markov chains, Foundations and Trends in Theoretical Computer Science, 1(3) (2006), 237–354. DOI 10.1561/0400000003.

    Article  MathSciNet  Google Scholar 

  43. V. B. Mountcastle, The columnar organization of the neocortex, Brain, 120(4) (1997), 701–22.

    Article  Google Scholar 

  44. L. Négyessy, T. Nepusz, L. Kocsis and F. Bazsó, Prediction of the main cortical areas and connections involved in the tactile fuction of the visual cortex by network analysis, Eur. J. Neurosci, 23(2) (2006), 1919–1930.

    Article  Google Scholar 

  45. L. Négyessy, T. Nepusz, L. Zalányi and F. Bazsó, Convergence and divergence are mostly reciprocated properties of the connections in the network of cortical areas, Proc. Roy. Soc. B., 275(1649) (2008), pp. 2403–2410. DOI 10.1098/rspb.2008.0629.

    Article  Google Scholar 

  46. T. Nepusz, A. Petróczi, L. Négyessy and F. Bazsó, Fuzzy communities and the concept of bridgeness in complex networks, Phys. Rev. E., 77 (2008), 016107.

    Article  MathSciNet  Google Scholar 

  47. M. E. J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. Unit. States. Am., 103(23) (June 2006), 8577–8582.

    Article  Google Scholar 

  48. M. E. J. Newman and E. A. Leicht, Mixture models and exploratory analysis in networks, Proc. Natl. Acad. Sci. Unit. States. Am., 104(23) (2007), 9564–9569. DOI 10.1073/pnas.0610537104.

    Article  MATH  Google Scholar 

  49. R. E. Passingham, K. E. Stephan and R. Kötter, The anatomical basis of functional localization in the cortex, Nat. Rev. Neurosci, 3(8) (2002), 606–16.

    Google Scholar 

  50. F. Petroni, S. Panzeri, C. C. Hilgetag, R. Kötter and M. P. Young, Simultaneity of responses in a hierarchical visual network, NeuroReport, 12(12) (2001), 2753–9.

    Article  Google Scholar 

  51. J. Reichardt and S. Bornholdt, Detecting fuzzy community structures in complex networks with a Potts model, Phys. Rev. Lett., 93 (2004), 218701.

    Article  Google Scholar 

  52. K. S. Rockland, Non-uniformity of extrinsic connections and columnar organization, J. Neurocytol, 31(3–5) (2002), 247–53.

    Article  Google Scholar 

  53. K. S. Rockland and N. I., Some thoughts on cortical minicolumns, Exp. Brain. Res., 158(3) (2004), 256–77.

    Article  Google Scholar 

  54. A. W. Roe, Modular complexity of area V2 in the macaque monkey, in: C. Collins and J. Kaas, editors, The Primate Visual System, CRC Press (2003), pages 109–138.

    Google Scholar 

  55. A. W. Roe and D. Y. Ts’o, Specificity of color connectivity between primate V1 and V2, J. Neurophysiol, 82(5) (1999), 2719–30.

    Google Scholar 

  56. O. Sporns, Graph theory methods for the analysis of neural connectivity patterns, in: R. Kötter, editor, Neuroscience Databases. A Practical Guide, Klüwer (2002).

    Google Scholar 

  57. O. Sporns, D. R. Chialvo, M. Kaiser and C. C. Hilgetag, Organization, development and function of complex brain networks, Trends Cognit. Sci., 8(9) (2004), 418–25.

    Article  Google Scholar 

  58. O. Sporns, C. J. Honey and R. Kötter, Identification and classification of hubs in brain networks, PLoS ONE, 2(10) (2007), e1049.

    Article  Google Scholar 

  59. D. D. Stettler, A. Das, J. Bennett and C. D. Gilbert, Lateral connectivity and contextual interactions in macaque primary visual cortex, Neuron, 36(4) (2002), 739–50.

    Article  Google Scholar 

  60. E. Szemerédi, Regular partitions of graphs, in: E. du Centre National de la Recherche Scientifique (CNRS), editor, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976, Paris (1978), pages 399–401.

    Google Scholar 

  61. J. Szentágothai, The “module-concept” in cerebral cortex architecture, Brain Res., 95(2–3) (1975), 475–96.

    Article  Google Scholar 

  62. J. Szentágothai, Specificity versus (quasi-) randomness revisited, Acta Morphologica Hungarica, 38 (1990), 159–167.

    Google Scholar 

  63. T. Tao, Szemerédi’s regularity lemma revisited, Contributions to Discrete Mathematics, 1 (2006), 8–28.

    MATH  MathSciNet  Google Scholar 

  64. G. Tononi, G. M. Edelman and O. Sporns, Complexity and coherency: integrating information in the brain, Trends Cognit. Sci., 2 (1998), 474–84.

    Article  Google Scholar 

  65. S. van Dongen, A stochastic uncoupling process for graphs, Technical Report INSR0011, National Research Institute for Mathematics and Computer Science in the Netherlands (2000).

    Google Scholar 

  66. D. C. Van Essen and D. L. Dierker, Surface-based and probabilistic atlases of primate cerebral cortex, Neuron, 56 (2007), 209–25.

    Article  Google Scholar 

  67. M. P. Young, Objective analysis of the topological organization of the primate cortical visual system, Nature, 358(6382) (1992), 152–5.

    Article  Google Scholar 

  68. M. Zhu and A. Ghodsi, Automatic dimensionality selection from the scree plot via the use of profile likelihood, Computational Statistics and Data Analysis, 51(2) (2006), 918–930. DOI 10.1016/j.csda.2005.09.010.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Nepusz, T., Négyessy, L., Tusnády, G., Bazsó, F. (2008). Reconstructing Cortical Networks: Case of Directed Graphs with High Level of Reciprocity. In: Bollobás, B., Kozma, R., Miklós, D. (eds) Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69395-6_8

Download citation

Publish with us

Policies and ethics