Skip to main content

The Inverse Problem of Evolving Networks — with Application to Social Nets

  • Chapter
Handbook of Large-Scale Random Networks

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 18))

Abstract

Many complex systems can be modeled by graphs [8]. The vertices of the graph represent objects of the system, and the edges of the graph the relationships between these objects. These relationships may be structural or functional, according to the modeler’s needs [1, 29, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Réka Albert and Albert-Lászl’o Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics, 74 (2002), 47.

    Article  MathSciNet  Google Scholar 

  2. Réka Albert, Hawoong Jeong and Albert-Lászl’o Barabási, The diameter of the world wide web, Nature, 401 (1999), 130–131.

    Article  Google Scholar 

  3. L. A. N. Amaral, A. Scala, M. Barhélémy and H. E. Stanley, Classes of small-world networks, Proc. Natl. Acad. Sci. USA, 97(21) (2000), 11149–11152, 10.

    Article  Google Scholar 

  4. A-L Barabási, H Jeong, Z Néda, E Ravasz, A Schubert and T Vicsek, Evolution of the social network of scientific collaborations, Physica A, 311 (2002), 590–614.

    Article  MATH  MathSciNet  Google Scholar 

  5. Albert-Lászl’o Barabási and Réka Albert, Emergence of scaling in random networks, Science, 286(5439) (1999), 509–512.

    Article  MathSciNet  Google Scholar 

  6. C. J. P. Belisle, Convergence theorems for a class of simulated annealing algorithms on rd, Journal of Applied Probability, 29 (1992), 885–895.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics, Physics Reports, 424 (2006), 175–308.

    Article  MathSciNet  Google Scholar 

  8. Béla Bollobás, Modern graph theory, Springer (2004).

    Google Scholar 

  9. Béla Bollobás and Oliver Riordan, The diameter of a scale-free random graph, Combinatorica, 24(1) (2004), 5–34.

    Article  MATH  MathSciNet  Google Scholar 

  10. Lj. B. Ciric, A generalization of Banach’s contraction principle, Proceedings of the American Mathematical Society, 45(2) (1974), 267–273.

    Article  MATH  MathSciNet  Google Scholar 

  11. Gábor Csárdi, Dynamics of citation networks, in: Proceedings of the Conference on Artificial Neural Networks (2006).

    Google Scholar 

  12. Gábor Csárdi, Modeling complex systems by evolving networks, PhD thesis, Eötvös Loránd University, 2007.

    Google Scholar 

  13. Gábor Csárdi and Tamás Nepusz, The igraph software package for complex network research, InterJournal, Complex Systems: 1695 (2006).

    Google Scholar 

  14. Gábor Csárdi, Katherine J. Strandburg, Lászl’o Zalányi, Jan Tobochnik and Péter Érdi, Modeling innovation by a kinetic description of the patent system, Physica A, 374 (2007), 783–793.

    Article  Google Scholar 

  15. S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks with aging of sites, Phys. Rev. E, 62(2) (2000), 1842–1845.

    Article  Google Scholar 

  16. S. N. Dorogovtsev and J. F. F. Mendes, Effect of the accelerating growth of communications networks on their structure, Phys. Rev. E, 63 (2001), 025101.

    Article  Google Scholar 

  17. S. N. D orogovtsev, J. F. F. Mendes and A. N. Samukhin, Growing network with heritable connectivity of nodes, cond-mat/0011077, 2000.

    Google Scholar 

  18. S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Generic scale of the “scale-free” growing networks, Phys. Rev. E, 63 (2001), 062101.

    Article  Google Scholar 

  19. S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Giant strongly connected component of directed networks, Phys. Rev. E, 64 (2001), 025101.

    Article  Google Scholar 

  20. G. Ergun and G. J. Rodgers, Growing random networks with fitness, Physica A, 303 (2002), 261–272.

    Article  Google Scholar 

  21. Bronwyn H. Hall, Adam B. Jaffe and Manuel Trajtenberg, The nber patent citation data file: Lessons, insights and methodological tools, in: Adam B. Jaffe and Manuel Trajtenberg, editors, Patents, Citations, and Innovations: A Window on the Knowledge Economy. MIT Press (2003).

    Google Scholar 

  22. Adam B. Jaffe and Josh Lerner, Innovation and Its Discontents: How Our Broken Patent System is Endangering Innovation and Progress, and What to Do About It, Princeton University Press (2004).

    Google Scholar 

  23. P. L. Krapivsky, G. J. Rodgers and S. Redner, Degree distributions of growing random networks, Phys. Rev. Lett., 86 (2001), 5401.

    Article  Google Scholar 

  24. Jure Leskovec, Jon Kleinberg and Christos Faloutsos, Graphs over time: densification laws, shrinking diameters and possible explanations, in: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, (2005), pp. 177–187.

    Google Scholar 

  25. M. E. J. Newman, Clustering and preferential attachment in growing networks, Physical Review E, 64 (2001), 025102.

    Article  Google Scholar 

  26. M. E. J. Newman, Scientific collaboration networks. I. Network construction and fundamental results, Physical Review E, 64 (2001), 016131.

    Article  Google Scholar 

  27. M. E. J. Newman, Assortative mixing in networks, Phys. Rev. Lett., 89 (2002), 208701.

    Article  Google Scholar 

  28. M. E. J. Newman, Mixing patterns in networks, Phys. Rev. E, 67 (2003), 026126.

    Article  MathSciNet  Google Scholar 

  29. M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167–256.

    Article  MATH  MathSciNet  Google Scholar 

  30. Jorge Nocedal and Stephen J. Wright, Numerical Optimization, Springer, 1999.

    Google Scholar 

  31. G. Orbán, T. Kiss, M. Lengyel and P. Érdi, Hippocampal rhythm generation: gamma related theta frequency resonance, Biological Cybernetics, 84 (2001), 123–132.

    Article  Google Scholar 

  32. D. J. de S. Price, A general theory of bibliometric and other cumulative advantage processes, J. Amer. Soc. Inform. Sci., 27 (1976), 292–306.

    Article  Google Scholar 

  33. R. Development. Core Team, R: A Language and Environment for Statistical Computing, R. Foundation for Statistical Computing, Vienna, Austria (2007), ISBN: 3-900051-07-0.

    Google Scholar 

  34. Bosiljka Tadic, Dynamics of directed graphs: the world-wide web, Physica A, 293 (2001), 273–284.

    Article  MATH  Google Scholar 

  35. Alexei Vazquez, Knowing a network by walking on it: emergence of scaling, Europhys. Lett., 54 (2001), 430. cond-mat/0006132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Csárdi, G., Strandburg, K.J., Tobochnik, J., Érdi, P. (2008). The Inverse Problem of Evolving Networks — with Application to Social Nets. In: Bollobás, B., Kozma, R., Miklós, D. (eds) Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69395-6_10

Download citation

Publish with us

Policies and ethics