Skip to main content

Random Graphs and Branching Processes

  • Chapter
Handbook of Large-Scale Random Networks

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 18))

Abstract

During the past decade or so, there has been much interest in generating and analyzing graphs resembling large-scale real-world networks such as the world wide web, neural networks, and social networks. As these large-scale networks seem to be ‘random’, in the sense that they do not have a transparent, well-defined structure, it does not seem too unreasonable to hope to find classical models of random graphs that share their basic properties. Such hopes are quickly dashed, however, since the classical random graphs are all homogeneous, in the sense that all vertices (or indeed all k-sets of vertices) are a priori equivalent in the model. Most real-world networks are not at all like this, as seen most easily from their often unbalanced (power-law) degree sequences. Thus, in order to model such graphs, a host of inhomogeneous random graph models have been constructed and studied.

Research supported in part by NSF grants DMS-0906634, CNS-0721983 and CCF- 0728928, and ARO grant W911NF-06-1-0076.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Aiello, F. Chung, and L. Lu, A random graph model for massive graphs, in: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pages 171–180 (electronic), New York, 2000. ACM.

    Google Scholar 

  2. W. Aiello, F. Chung, and L. Lu, A random graph model for power law graphs, Experiment. Math., 10 (2001), 53–66.

    MATH  MathSciNet  Google Scholar 

  3. R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47–97.

    Article  Google Scholar 

  4. R. Albert, H. Jeong, and A.-L. Barabási, Diameter of the world-wide web, Nature, 401 (1999), 130–131.

    Article  Google Scholar 

  5. R. Albert, H. Jeong, and A.-L. Barabási, Error and attack tolerance of complex networks, Nature, 406 (2000), 378–382.

    Article  Google Scholar 

  6. D. Aldous, Brownian excursions, critical random graphs and the multiplicative coalescent, Ann. Probab., 25 (1997), 812–854.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Aldous and R. Lyons, Processes on unimodular random networks, Electron. J. Probab., 12(54) (2007), 1454–1508 (electronic).

    MATH  MathSciNet  Google Scholar 

  8. D. Aldous and J. M. Steele, The objective method: probabilistic combinatorial optimization and local weak convergence, in: Probability on discrete structures, volume 110 of Encyclopaedia Math. Sci., pages 1–72. Springer, Berlin, 2004.

    Google Scholar 

  9. K. B. Athreya and P. E. Ney, Branching processes, Springer-Verlag, New York, 1972, Die Grundlehren der mathematischen Wissenschaften, Band 196.

    MATH  Google Scholar 

  10. T. L. Austin, R. E. Fagen, W. F. Penney, and J. Riordan, The number of components in random linear graphs, Ann. Math. Statist, 30 (1959), 747–754.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Axenovich, A. Kézdy, and R. Martin, On the editing distance of graphs J. Graph Theory, 58 (2008), 123–138.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. N. Bagaev and E. F. Dmitriev, Enumeration of connected labeled bipartite graphs, Dokl. Akad. Nauk BSSR, 28 (1984), 1061–1063, 1148.

    MATH  MathSciNet  Google Scholar 

  13. A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509–512.

    Article  MathSciNet  Google Scholar 

  14. A.-L. Barabási, R. Albert, and H. Jeong, Scale-free characteristics of random networks: the topology of the world-wide web, Physica A, 281 (2000), 69–77.

    Article  Google Scholar 

  15. M. Behrisch, A. Coja-Oghlan, and M. Kang, Local limit theorems and number of connected hypergraphs, Preprint available from arXiv:0706.0497, 2007.

    Google Scholar 

  16. M. Behrisch, A. Coja-Oghlan, and M. Kang, The order of the giant component of random hypergraphs, Preprint available from arXiv:0706.0496, 2007.

    Google Scholar 

  17. E. A. Bender and E. R. Canfield, The asymptotic number of labeled graphs with given degree sequences, J. Combinatorial Theory Ser. A, 24 (1978), 296–307.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. A. Bender, E. R. Canfield, and B. D. McKay, The asymptotic number of labeled connected graphs with a given number of vertices and edges, Random Structures Algorithms, 1 (1990), 127–169.

    Article  MATH  MathSciNet  Google Scholar 

  19. I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., 6, article no. 23 (2001), 13 pp. (electronic).

    Google Scholar 

  20. N. Berger, B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, Degree distribution of the FKP network model, in: Automata, Languages and Programming, volume 2719 of Lecture Notes in Comput. Sci., pages 725–738. Springer, Berlin, 2003.

    Google Scholar 

  21. N. Berger, B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, Degree distribution of the FKP network model, Theor. Comput. Sci., 379 (2007), 306–316.

    Article  MATH  Google Scholar 

  22. N. Berger, C. Borgs, J. T. Chayes, R. M. D’Souza, and R. D. Kleinberg, Competition-induced preferential attachment, in: Automata, Languages and Programming, volume 3142 of Lecture Notes in Comput. Sci., pages 208–221. Springer, Berlin, 2004.

    Google Scholar 

  23. N. Berger, C. Borgs, J. T. Chayes, R. M. D’Souza, and R. D. Kleinberg, Degree distribution of competition-induced preferential attachment graphs, Combin. Probab. Comput., 14 (2005), 697–721.

    Article  MATH  MathSciNet  Google Scholar 

  24. N. Berger, C. Borgs, J. T. Chayes, and A. Saberi, On the spread of viruses on the internet, in: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 301–310 (electronic), New York, 2005. ACM.

    Google Scholar 

  25. B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European J. Combin., 1 (1980), 311–316.

    MATH  MathSciNet  Google Scholar 

  26. B. Bollobás, The independence ratio of regular graphs, Proc. Amer. Math. Soc., 83 (1981), 433–436.

    Article  MATH  MathSciNet  Google Scholar 

  27. B. Bollobás, The asymptotic number of unlabelled regular graphs, J. London Math. Soc. (2), 26 (1982), 201–206.

    Article  MATH  MathSciNet  Google Scholar 

  28. B. Bollobás, Almost all regular graphs are Hamiltonian, European J. Combin., 4 (1983), 97–106.

    MATH  MathSciNet  Google Scholar 

  29. B. Bollobás, The evolution of random graphs, Trans. Amer. Math. Soc., 286 (1984), 257–274.

    Article  MATH  MathSciNet  Google Scholar 

  30. B. Bollobás, The evolution of sparse graphs, in: Graph Theory and Combinatorics (Cambridge, 1983), pages 35–57. Academic Press, London, 1984.

    Google Scholar 

  31. B. Bollobás, Random Graphs, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1985.

    MATH  Google Scholar 

  32. B. Bollobás, The isoperimetric number of random regular graphs, European J. Combin., 9 (1988), 241–244.

    MATH  MathSciNet  Google Scholar 

  33. B. Bollobás, Modern Graph Theory, volume 184 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1998.

    Google Scholar 

  34. B. Bollobás, Random Graphs, volume 73 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, second edition, 2001.

    Google Scholar 

  35. B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, Directed scale-free graphs, in: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), pages 132–139, New York, 2003. ACM.

    Google Scholar 

  36. B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, Percolation on dense graph sequences, Ann. Probab., to appear.

    Google Scholar 

  37. B. Bollobás, C. Borgs, J. T. Chayes, J. H. Kim, and D. B. Wilson, The scaling window of the 2-SAT transition, Random Structures Algorithms, 18 (2001), 201–256.

    Article  MATH  MathSciNet  Google Scholar 

  38. B. Bollobás and F. R. K. Chung, The diameter of a cycle plus a random matching, SIAM J. Discrete Math., 1 (1988), 328–333.

    Article  MATH  MathSciNet  Google Scholar 

  39. B. Bollobás and W. Fernandez de la Vega, The diameter of random regular graphs, Combinatorica, 2 (1982), 125–134.

    Article  MATH  MathSciNet  Google Scholar 

  40. B. Bollobás, S. Janson, and O. Riordan, The phase transition in the uniformly grown random graph has infinite order, Random Structures Algorithms, 26 (2005), 1–36.

    Article  MATH  MathSciNet  Google Scholar 

  41. B. Bollobás, S. Janson, and O. Riordan, The phase transition in inhomogeneous random graphs, Random Structures Algorithms, 31 (2007), 3–122.

    Article  MATH  MathSciNet  Google Scholar 

  42. B. Bollobás, S. Janson, and O. Riordan, Spread-out percolation in Rd, Random Structures Algorithms, 31 (2007), 239–246.

    Article  MATH  MathSciNet  Google Scholar 

  43. B. Bollobás, S. Janson, and O. Riordan, Line-of-sight percolation, Combinatorics Probability and Computing, 18 (2009), 83–106.

    Article  MATH  MathSciNet  Google Scholar 

  44. B. Bollobás, S. Janson, and O. Riordan, Sparse random graphs with clustering, Preprint available from arXiv:0807.2040, 2008.

    Google Scholar 

  45. B. Bollobás and B. D. McKay, The number of matchings in random regular graphs and bipartite graphs, J. Combin. Theory Ser. B, 41 (1986), 80–91.

    Article  MATH  MathSciNet  Google Scholar 

  46. B. Bollobás and O. Riordan, Constrained graph processes, Electron. J. Combin., 7, Research Paper 18 (2000), 20 pp. (electronic).

    Google Scholar 

  47. B. Bollobás and O. Riordan, Mathematical results on scale-free random graphs, in: Handbook of Graphs and Networks, pages 1–34. Wiley-VCH, Weinheim, 2003.

    Google Scholar 

  48. B. Bollobás and O. Riordan, Robustness and vulnerability of scale-free random graphs, Internet Math., 1 (2003), 1–35.

    MATH  MathSciNet  Google Scholar 

  49. B. Bollobás and O. Riordan, The diameter of a scale-free random graph, Combinatorica, 24 (2004), 5–34.

    Article  MATH  MathSciNet  Google Scholar 

  50. B. Bollobás and O. Riordan, Slow emergence of the giant component in the growing m-out graph, Random Structures Algorithms, 27 (2005), 1–24.

    Article  MATH  MathSciNet  Google Scholar 

  51. B. Bollobás and O. Riordan, Sparse graphs: metrics and random models, Preprint available from arXiv:0708.1919, 2007.

    Google Scholar 

  52. B. Bollobás and O. Riordan, Clique percolation, Preprint available from arXiv:0804.0867, 2008

    Google Scholar 

  53. B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády, The degree sequence of a scale-free random graph process, Random Structures Algorithms, 18 (2001), 279–290.

    Article  MATH  MathSciNet  Google Scholar 

  54. B. Bollobás, A. Saito, and N. C. Wormald, Regular factors of regular graphs, J. Graph Theory, 9 (1985), 97–103.

    Article  MATH  MathSciNet  Google Scholar 

  55. C. Borgs, J. Chayes, L. Lovász, V. T. Sós, B. Szegedy, and K. Vesztergombi, Graph limits and parameter testing, in: STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing pages 261–270, New York, 2006. ACM.

    Google Scholar 

  56. C. Borgs, J. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi, Counting graph homomorphisms, in: Topics in Discrete Mathematics, volume 26 of Algorithms Combin., pages 315–371. Springer, Berlin, 2006.

    Google Scholar 

  57. C. Borgs, J. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs I: Subgraph frequencies, Adv. Math., 219 (2008), 1801–1851.

    Article  MATH  MathSciNet  Google Scholar 

  58. C. Borgs, J. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs II: Multiway cuts and statistical physics, Preprint, 2007.

    Google Scholar 

  59. V. E. Britikov, The structure of a random graph near a critical point, Diskret. Mat., 1 (1989), 121–128.

    MATH  MathSciNet  Google Scholar 

  60. T. Britton, M. Deijfen, and A. Martin-Löf, Generating simple random graphs with prescribed degree distribution, J. Stat. Phys., 124 (2006), 1377–1397.

    Article  MATH  MathSciNet  Google Scholar 

  61. P. G. Buckley and D. Osthus, Popularity based random graph models leading to a scale-free degree sequence, Discrete Math., 282 (2004), 53–68.

    Article  MATH  MathSciNet  Google Scholar 

  62. J. Cain and N. Wormald, Encores on cores, Electron. J. Combin., 13, R81 (2006), 13 pp. (electronic).

    MathSciNet  Google Scholar 

  63. D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and S. H. Strogatz, Are randomly grown graphs really random? Phys. Rev. E., 64, 041902 (Sep. 2001).

    Article  Google Scholar 

  64. D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Network robustness and fragility: Percolation on random graphs, Phys. Rev. Lett., 85 (Dec. 2000), 5468–5471.

    Article  Google Scholar 

  65. F. Chung and R. Graham, Sparse quasi-random graphs, Combinatorica, 22 (2002), 217–244.

    Article  MATH  MathSciNet  Google Scholar 

  66. F. Chung and L. Lu, The diameter of sparse random graphs, Adv. in Appl. Math., 26 (2001), 257–279.

    Article  MATH  MathSciNet  Google Scholar 

  67. F. Chung and L. Lu, The average distances in random graphs with given expected degrees, Proc. Natl. Acad. Sci. USA, 99 (2002), 15879–15882 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  68. F. Chung and L. Lu, Connected components in random graphs with given expected degree sequences, Ann. Comb., 6 (2002), 125–145.

    Article  MATH  MathSciNet  Google Scholar 

  69. F. Chung and L. Lu, The average distance in a random graph with given expected degrees, Internet Math., 1 (2003), 91–113.

    MATH  MathSciNet  Google Scholar 

  70. F. Chung and L. Lu, The volume of the giant component of a random graph with given expected degrees, SIAM J. Discrete Math., 20 (2006), 395–411 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  71. F. Chung, L. Lu, and V. Vu, Spectra of random graphs with given expected degrees, Proc. Natl. Acad. Sci. USA, 100 (2003), 6313–6318 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  72. V. Chvátal, Almost all graphs with 1.44n edges are 3-colorable, Random Structures Algorithms, 2 (1991), 11–28.

    MATH  MathSciNet  Google Scholar 

  73. R. Cohen, K. Erez, D. ben Avraham, and S. Havlin, Resilience of the internet to random breakdowns, Phys. Rev. Lett., 85 (Nov. 2000), 4626–4628.

    Article  Google Scholar 

  74. R. Cohen, K. Erez, D. ben Avraham, and S. Havlin, Breakdown of the internet under intentional attack, Phys. Rev. Lett., 86 (Apr. 2001), 3682–3685.

    Article  Google Scholar 

  75. R. Cohen and S. Havlin, Scale-free networks are ultrasmall, Phys. Rev. Lett., 90 (Feb. 2003), 058701.

    Article  Google Scholar 

  76. A. Coja-Oghlan, C. Moore, and V. Sanwalani, Counting connected graphs and hypergraphs via the probabilistic method, Random Structures Algorithms, 31 (2007), 288–329.

    Article  MATH  MathSciNet  Google Scholar 

  77. C. Cooper, The cores of random hypergraphs with a given degree sequence, Random Structures Algorithms, 25 (2004), 353–375.

    Article  MathSciNet  Google Scholar 

  78. C. Cooper and A. Frieze, A general model of web graphs, Random Structures Algorithms, 22 (2003), 311–335.

    Article  MATH  MathSciNet  Google Scholar 

  79. C. Cooper, A. Frieze, and B. Reed, Random regular graphs of non-constant degree: connectivity and Hamiltonicity, Combin. Probab. Comput., 11 (2002), 249–261.

    MATH  MathSciNet  Google Scholar 

  80. C. Cooper, A. Frieze, B. Reed, and O. Riordan, Random regular graphs of nonconstant degree: independence and chromatic number, Combin. Probab. Comput., 11 (2002), 323–341.

    MATH  MathSciNet  Google Scholar 

  81. J. T. Cox and R. Durrett, The stepping stone model: new formulas expose old myths, Ann. Appl. Probab., 12 (2002), 1348–1377.

    Article  MATH  MathSciNet  Google Scholar 

  82. R. Darling and J. Norris, Differential equation approximations for markov chains, Probab. Surv., 5 (2008), 37–79.

    Article  MathSciNet  MATH  Google Scholar 

  83. I. Derényi, G. Palla, and T. Vicsek, Clique percolation in random networks, Physical Review Letters, 94 (2005), 160202.

    Article  Google Scholar 

  84. L. Devroye, C. McDiarmid, and B. Reed, Giant components for two expanding graph processes, in: Mathematics and Computer Science, II (Versailles, 2002), Trends Math., pages 161–173. Birkhäuser, Basel, 2002.

    Google Scholar 

  85. S. Dorogovtsev and J. Mendes, Evolution of networks, Adv. Phys., 51 (2002), 1079–1187.

    Article  Google Scholar 

  86. S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, k-core architecture and k-core percolation on complex networks, Phys. D, 224 (2006), 7–19.

    Article  MATH  MathSciNet  Google Scholar 

  87. S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks: From biological nets to the Internet and WWW, Oxford University Press, Oxford, 2003.

    MATH  Google Scholar 

  88. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Anomalous percolation properties of growing networks, Phys. Rev. E., 64 (Nov. 2001), 066110.

    Article  Google Scholar 

  89. R. Durrett, Rigorous result for the CHKNS random graph model, in: Discrete Random Walks (Paris, 2003), Discrete Math. Theor. Comput. Sci. Proc., AC, pages 95–104 (electronic). Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003.

    Google Scholar 

  90. R. Durrett and H. Kesten, The critical parameter for connectedness of some random graphs, in: A tribute to Paul Erdős, pages 161–176. Cambridge Univ. Press, Cambridge, 1990.

    Google Scholar 

  91. R. Durrett and M. Restrepo, One-dimensional stepping stone models, sardine genetics and Brownian local time, Ann. Appl. Probab., 18 (2008), 334–358.

    Article  MATH  MathSciNet  Google Scholar 

  92. P. Erdős, On some new inequalities concerning extremal properties of graphs, in: Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 77–81. Academic Press, New York, 1968.

    Google Scholar 

  93. P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen, 6 (1959), 290–297.

    MathSciNet  Google Scholar 

  94. P. Erdős and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5 (1960), 17–61.

    Google Scholar 

  95. P. Erdős and A. Rényi, On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hungar., 12 (1961), 261–267.

    Article  MathSciNet  Google Scholar 

  96. P. Erdős and A. Rényi, On random matrices, Magyar Tud. Akad. Mat. Kutató Int. Közl, 8 (1964), 455–461 (1964).

    Google Scholar 

  97. P. Erdős and A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta Math. Acad. Sci. Hungar., 17 (1966), 359–368.

    Article  MathSciNet  Google Scholar 

  98. P. Erdős and A. Rényi, On random matrices. II, Studia Sci. Math. Hungar., 3 (1968), 459–464.

    MathSciNet  Google Scholar 

  99. P. Erdős, S. Suen, and P. Winkler, On the size of a random maximal graph, Random Structures Algorithms, 6 (1995), 309–318.

    MathSciNet  Google Scholar 

  100. A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou, Heuristically optimized trade-offs: A new paradigm for power laws in the internet, in: ICALP’ 02: Proceedings of the 29th International Colloquium on Automata, Languages and Programming, pages 110–122, London, UK, 2002. Springer-Verlag.

    Google Scholar 

  101. M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the internet topology, in: SIGCOMM’ 99: Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication, pages 251–262, New York, NY, USA, 1999. ACM.

    Google Scholar 

  102. T. I. Fenner and A. M. Frieze, Hamiltonian cycles in random regular graphs, J. Combin. Theory Ser. B, 37 (1984), 103–112.

    Article  MATH  MathSciNet  Google Scholar 

  103. D. Fernholz and V. Ramachandran, Cores and connectivity in sparse random graphs, Technical Report UTCS TR04-13, Department of Computer Science, University of Texas at Austin, 2004.

    Google Scholar 

  104. D. Fernholz and V. Ramachandran, The diameter of sparse random graphs, Random Structures Algorithms, 31 (2007), 482–516.

    Article  MATH  MathSciNet  Google Scholar 

  105. G. W. Ford, R. Z. Norman, and G. E. Uhlenbeck, Combinatorial problems in the theory of graphs. II, Proc. Nat. Acad. Sci. U. S. A., 42 (1956), 203–208.

    Article  MATH  MathSciNet  Google Scholar 

  106. G. W. Ford and G. E. Uhlenbeck, Combinatorial problems in the theory of graphs. I, Proc. Nat. Acad. Sci. U. S. A., 42 (1956), 122–128.

    Article  MATH  MathSciNet  Google Scholar 

  107. G. W. Ford and G. E. Uhlenbeck, Combinatorial problems in the theory of graphs. III, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 529–535.

    Article  MATH  MathSciNet  Google Scholar 

  108. G. W. Ford and G. E. Uhlenbeck, Combinatorial problems in the theory of graphs. IV, Proc. Nat. Acad. Sci. U.S.A., 43 (1957), 163–167.

    Article  MathSciNet  Google Scholar 

  109. N. Fountoulakis, Percolation on sparse random graphs with given degree sequence, Preprint available from arXiv:math/0703269, 2007.

    Google Scholar 

  110. A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica, 19 (1999), 175–220.

    Article  MATH  MathSciNet  Google Scholar 

  111. A. Frieze, J. Kleinberg, R. Ravi, and W. Debany, Line-of-sight networks, in: Proc. 18th ACM-SIAM Symposium on Discrete Algorithms, pages 968–977, 2007.

    Google Scholar 

  112. A. Frieze, M. Krivelevich, and C. Smyth, On the chromatic number of random graphs with a fixed degree sequence, Combin. Probab. Comput., 16 (2007), 733–746.

    Article  MATH  MathSciNet  Google Scholar 

  113. A. M. Frieze, Finding Hamilton cycles in sparse random graphs, J. Combin. Theory Ser. B, 44 (1988), 230–250.

    Article  MATH  MathSciNet  Google Scholar 

  114. A. M. Frieze, Random regular graphs of non-constant degree, Technical Report, Department of Mathematical Sciences, Carnegie Mellon University, 1988.

    Google Scholar 

  115. E. N. Gilbert, Random graphs, Ann. Math. Statist., 30 (1959), 1141–1144.

    Article  MATH  MathSciNet  Google Scholar 

  116. N. Gilbert, A simulation of the structure of academic science, Sociological Research Online, 2, 1997.

    Google Scholar 

  117. A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, k-core (bootstrap) percolation on complex networks: critical phenomena and nonlocal effects, Phys. Rev. E., 73, 10 (2006), 056101.

    Article  MathSciNet  Google Scholar 

  118. C. Greenhill, A. Ruciński, and N. C. Wormald, Random hypergraph processes with degree restrictions, Graphs Combin., 20 (2004), 319–332.

    Article  MATH  MathSciNet  Google Scholar 

  119. T. E. Harris, The theory of branching processes, Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Springer-Verlag, Berlin, 1963.

    MATH  Google Scholar 

  120. T. E. Harris, The theory of branching processes, Dover Phoenix Editions. Dover Publications Inc., Mineola, NY, 2002, Corrected reprint of the 1963 original [Springer, Berlin].

    MATH  Google Scholar 

  121. S. Janson, On a random graph related to quantum theory, Combin. Probab. Comput., 16 (2007), 757–766.

    Article  MATH  MathSciNet  Google Scholar 

  122. S. Janson, On percolation in random graphs with given vertex degrees, Electron. J. Probab., 14 (2009), 87–118.

    MathSciNet  Google Scholar 

  123. S. Janson, Standard representation of multivariate functions on a general probability space, Preprint available from arXiv:0801.0196, 2008.

    Google Scholar 

  124. S. Janson, D. E. Knuth, T. Luczak, and B. Pittel, The birth of the giant component, Random Structures Algorithms, 4 (1993), 231–358. With an introduction by the editors.

    Article  MathSciNet  Google Scholar 

  125. S. Janson and M. J. Luczak, A simple solution to the k-core problem, Random Structures Algorithms, 30 (2007), 50–62.

    Article  MATH  MathSciNet  Google Scholar 

  126. S. Janson and M. J. Luczak, A new approach to the giant component problem, Random Structures Algorithms, 34 (2009), 197–216.

    Article  MATH  MathSciNet  Google Scholar 

  127. S. Janson, T. Luczak, and A. Rucinski, Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.

    Google Scholar 

  128. S. Janson and J. Spencer, A point process describing the component sizes in the critical window of the random graph evolution, Combin. Probab. Comput., 16 (2007), 631–658.

    Article  MATH  MathSciNet  Google Scholar 

  129. S. Kalikow and B. Weiss, When are random graphs connected, Israel J. Math., 62 (1988), 257–268.

    Article  MATH  MathSciNet  Google Scholar 

  130. M. Kang and T. G. Seierstad, The critical phase for random graphs with a given degree sequence, Combin. Probab. Comput., 17 (2008), 67–86.

    Article  MATH  MathSciNet  Google Scholar 

  131. R. M. Karp, The transitive closure of a random digraph, Random Structures Algorithms, 1 (1990), 73–93.

    Article  MATH  MathSciNet  Google Scholar 

  132. L. Katz, Probability of indecomposability of a random mapping function, Ann. Math. Statist., 26 (1955), 512–517.

    Article  MATH  MathSciNet  Google Scholar 

  133. D. G. Kendall, Deterministic and stochastic epidemics in closed populations, in: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. IV, pages 149–165, Berkeley and Los Angeles, 1956. University of California Press.

    Google Scholar 

  134. D. G. Kendall, Branching processes since 1873, J. London Math. Soc., 41 (1966), 385–406.

    Article  MATH  MathSciNet  Google Scholar 

  135. V. I. Khokhlov and V. F. Kolchin, On the structure of a random graph with nonuniform distribution, in: New trends in probability and statistics, Vol. 1 (Bakuriani, 1990), pages 445–456. VSP, Utrecht, 1991.

    Google Scholar 

  136. M. Kimura, “stepping stone” model of population, Ann. Rep. Nat. Inst. Genet. Japan, 3 (1953), 62–63.

    Google Scholar 

  137. V. F. Kolchin and V. I. Khokhlov, On the number of cycles in a random nonequiprobable graph, Diskret. Mat., 2 (1990), 137–145.

    MATH  MathSciNet  Google Scholar 

  138. M. Krivelevich, B. Sudakov, V. H. Vu, and N. C. Wormald, Random regular graphs of high degree, Random Structures Algorithms, 18 (2001), 346–363.

    Article  MATH  MathSciNet  Google Scholar 

  139. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal, Stochastic models for the web graph, in: 41st Annual Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000), pages 57–65. IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.

    Chapter  Google Scholar 

  140. A. Lotka, The frequency distribution of scientific productivity, J. Washington Acad. Sci., 16 (1926), 317.

    Google Scholar 

  141. L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006), 933–957.

    Article  MATH  MathSciNet  Google Scholar 

  142. L. Lovász and V. T. Sós, Generalized quasirandom graphs, J. Combin. Theory Ser. B, 98 (2008), 146–163.

    Article  MATH  MathSciNet  Google Scholar 

  143. T. Luczak, Component behavior near the critical point of the random graph process, Random Structures Algorithms, 1 (1990), 287–310.

    Article  MATH  MathSciNet  Google Scholar 

  144. T. Luczak, Random trees and random graphs, Random Structures Algorithms, 13 (1998), 485–500.

    Article  MATH  MathSciNet  Google Scholar 

  145. T. Luczak, B. Pittel, and J. C. Wierman, The structure of a random graph at the point of the phase transition, Trans. Amer. Math. Soc., 341 (1994), 721–748.

    Article  MATH  MathSciNet  Google Scholar 

  146. T. Luczak and J. C. Wierman, The chromatic number of random graphs at the double-jump threshold, Combinatorica, 9 (1989), 39–49.

    Article  MATH  MathSciNet  Google Scholar 

  147. B. D. McKay, Asymptotics for 0–1 matrices with prescribed line sums, in: Enumeration and design (Waterloo, Ont., 1982), pages 225–238. Academic Press, Toronto, ON, 1984.

    Google Scholar 

  148. B. D. McKay and N. C. Wormald, Asymptotic enumeration by degree sequence of graphs of high degree, European J. Combin., 11 (1990), 565–580.

    MATH  MathSciNet  Google Scholar 

  149. B. D. McKay and N. C. Wormald, Uniform generation of random regular graphs of moderate degree, J. Algorithms, 11 (1990), 52–67.

    Article  MATH  MathSciNet  Google Scholar 

  150. M. Molloy, Cores in random hypergraphs and Boolean formulas, Random Structures Algorithms, 27 (2005), 124–135.

    Article  MATH  MathSciNet  Google Scholar 

  151. M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence, Random Structures Algorithms, 6 (1995), 161–179.

    Article  MATH  MathSciNet  Google Scholar 

  152. M. Molloy and B. Reed, The size of the giant component of a random graph with a given degree sequence, Combin. Probab. Comput., 7 (1998), 295–305.

    Article  MATH  MathSciNet  Google Scholar 

  153. A. Nachmias and Y. Peres, Component sizes of the random graph outside the scaling window, ALEA Lat. Am. J. Probab. Math. Stat., 3 (2007), 133–142 (electronic).

    MATH  MathSciNet  Google Scholar 

  154. M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E., 64 (Jul. 2001), 026118.

    Article  Google Scholar 

  155. I. Norros and H. Reittu, On a conditionally Poissonian graph process, Adv. in Appl. Probab., 38 (2006), 59–75.

    Article  MATH  MathSciNet  Google Scholar 

  156. D. Osthus and A. Taraz, Random maximal H-free graphs, Random Structures Algorithms, 18 (2001), 61–82.

    Article  MATH  MathSciNet  Google Scholar 

  157. G. Palla, D. Ábel, I. Farkas, P. Pollner, I. Derényi, and T. Vicsek, k-clique percolation and clustering, this volume (2009), 369–408.

    Google Scholar 

  158. G. Palla, I. Derényi, and T. Vicsek, The critical point of k-clique percolation in the Erdős-Rényi graph, J. Stat. Phys., 128 (2007), 219–227.

    Article  MATH  MathSciNet  Google Scholar 

  159. G. Palla, I. Farkas, P. Pollner, I. Derényi, and T. Vicsek, Directed network modules, New Journal of Physics, 9 (2007), 186 (21 pages).

    Article  Google Scholar 

  160. M. D. Penrose, On the spread-out limit for bond and continuum percolation, Ann. Appl. Probab., 3 (1993), 253–276.

    Article  MATH  MathSciNet  Google Scholar 

  161. B. Pittel, On tree census and the giant component in sparse random graphs, Random Structures Algorithms, 1 (1990), 311–342.

    Article  MATH  MathSciNet  Google Scholar 

  162. B. Pittel, On the largest component of the random graph at a nearcritical stage, J. Combin. Theory Ser. B, 82 (2001), 237–269.

    Article  MATH  MathSciNet  Google Scholar 

  163. B. Pittel, J. Spencer, and N. Wormald, Sudden emergence of a giant k-core in a random graph, J. Combin. Theory Ser. B, 67 (1996), 111–151.

    Article  MATH  MathSciNet  Google Scholar 

  164. A. Rényi, On connected graphs. I, Magyar Tud. Akad. Mat. Kutató Int. Közl., 4 (1959), 385–388.

    MATH  Google Scholar 

  165. R. J. Riddell, Jr. and G. E. Uhlenbeck, On the theory of the virial development of the equation of state of mono-atomic gases, J. Chem. Phys., 21 (1953), 2056–2064.

    Article  MathSciNet  Google Scholar 

  166. O. Riordan, The small giant component in scale-free random graphs, Combin. Probab. Comput., 14 (2005), 897–938.

    Article  MATH  MathSciNet  Google Scholar 

  167. O. Riordan, The k-core and branching processes, Combin. Probab. Comput., 17 (2008), 111–136.

    MATH  MathSciNet  Google Scholar 

  168. O. Riordan, The mathematics of the Barabási—Albert network model, Lecture Notes of the Institute of Mathematical Sciences, University of Singapore, to appear, 2008.

    Google Scholar 

  169. O. Riordan and N. Wormald, The diameter of G(n, p), Preprint available from arXiv:0808.4067, 2008.

    Google Scholar 

  170. R. W. Robinson and N. C. Wormald, Almost all regular graphs are Hamiltonian, Random Structures Algorithms, 5 (1994), 363–374.

    Article  MATH  MathSciNet  Google Scholar 

  171. A. Ruciński and N. C. Wormald, Random graph processes with degree restrictions, Combin. Probab. Comput., 1 (1992), 169–180.

    MATH  Google Scholar 

  172. A. Ruciński and N. C. Wormald, Random graph processes with maximum degree 2, Ann. Appl. Probab., 7 (1997), 183–199.

    Article  MATH  MathSciNet  Google Scholar 

  173. A. Ruciński and N. C. Wormald, Connectedness of graphs generated by a random d-process, J. Aust. Math. Soc., 72 (2002), 67–85.

    Article  MATH  MathSciNet  Google Scholar 

  174. J. Schmidt-Pruzan and E. Shamir, Component structure in the evolution of random hypergraphs, Combinatorica, 5 (1985), 81–94.

    Article  MATH  MathSciNet  Google Scholar 

  175. A. D. Scott and G. B. Sorkin, Solving sparse random instances of Max Cut and Max 2-CSP in linear expected time, Combin. Probab. Comput., 15 (2006), 281–315.

    Article  MATH  MathSciNet  Google Scholar 

  176. L. A. Shepp, Connectedness of certain random graphs, Israel J. Math., 67 (1989), 23–33.

    Article  MATH  MathSciNet  Google Scholar 

  177. H. Simon, On a class of skew distribution functions, Biometrika, 42 (1955), 425–440.

    MATH  MathSciNet  Google Scholar 

  178. M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: fTheory of Graphs (Proc. Colloq., Tihany, 1966), pages 279–319. Academic Press, New York, 1968.

    Google Scholar 

  179. B. Söderberg, General formalism for inhomogeneous random graphs, Phys. Rev. E., 66, 6 (2002), 066121.

    Article  MathSciNet  Google Scholar 

  180. B. Söderberg, Random graphs with hidden color, Phys. Rev. E., 68(R) (2003), 015102.

    Article  Google Scholar 

  181. B. Söderberg, Properties of random graphs with hidden color, Phys. Rev. E., 68, 12 (2003), 026107.

    Article  MathSciNet  Google Scholar 

  182. B. Söderberg, Random graph models with hidden color, Acta Physica Polonica B., 34 (2003), 5085–5102.

    Google Scholar 

  183. V. E. Stepanov, The probability of the connectedness of a random graph G m (t), Teor. Verojatnost. i Primenen., 15 (1970), 58–68.

    MathSciNet  Google Scholar 

  184. V. E. Stepanov, Phase transitions in random graphs, Teor. Verojatnost. i Primenen., 15 (1970), 200–216.

    MathSciNet  Google Scholar 

  185. V. E. Stepanov, Structure of the random graphs G m (xh), Teor. Verojatnost. i Primenen., 17 (1972), 238–252.

    MathSciNet  Google Scholar 

  186. V. E. Stepanov, Some features of the structure of a random graph near a critical point, Teor. Veroyatnost. i Primenen., 32 (1987), 633–657.

    MATH  MathSciNet  Google Scholar 

  187. T. S. Turova, Dynamical random graphs with memory, Phys. Rev. E., 65, 9 (2002), 066102.

    Article  MathSciNet  Google Scholar 

  188. T. S. Turova, Long paths and cycles in dynamical graphs, J. Statist. Phys., 110 (2003), 385–417.

    Article  MATH  MathSciNet  Google Scholar 

  189. T. S. Turova, Phase transitions in dynamical random graphs, J. Stat. Phys., 123 (2006), 1007–1032.

    Article  MATH  MathSciNet  Google Scholar 

  190. T. S. Turova, Continuity of the percolation threshold in randomly grown graphs, Electron. J. Probab., 12 (2007), 1036–1047 (electronic).

    MATH  MathSciNet  Google Scholar 

  191. H. van den Esker, R. van der Hofstad, G. Hooghiemstra, and D. Znamenski, Distances in random graphs with infinite mean degrees, Extremes, 8 (2005), 111–141 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  192. R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem, Distances in random graphs with finite variance degrees, Random Structures Algorithms, 27 (2005), 76–123.

    Article  MATH  MathSciNet  Google Scholar 

  193. R. van der Hofstad, G. Hooghiemstra, and D. Znamenski, Distances in random graphs with finite mean and infinite variance degrees, Electron. J. Probab., 12 (2007), 703–766 (electronic).

    MATH  MathSciNet  Google Scholar 

  194. H. Watson and F. Galton, On the probability of the extinction of families, Journal of the Anthropological Institute of Great Britain, 4 (1875), 138–144.

    Article  Google Scholar 

  195. D. Watts and S. Strogatz, Collective dynamics of’ small-world’ networks, Nature, 393 (1998), 440–442.

    Article  Google Scholar 

  196. E. M. Wright, The number of connected sparsely edged graphs, J. Graph Theory, 1 (1977), 317–330.

    Article  MATH  MathSciNet  Google Scholar 

  197. E. M. Wright, The number of connected sparsely edged graphs. II. Smooth graphs and blocks, J. Graph Theory, 2 (1978), 299–305.

    Article  MATH  MathSciNet  Google Scholar 

  198. E. M. Wright, The number of connected sparsely edged graphs. III. Asymptotic results, J. Graph Theory, 4 (1980), 393–407.

    Article  MATH  MathSciNet  Google Scholar 

  199. E. M. Wright, The number of connected sparsely edged graphs. IV. Large nonseparable graphs, J. Graph Theory, 7 (1983), 219–229.

    Article  MathSciNet  Google Scholar 

  200. I. Zähle, J. T. Cox, and R. Durrett, The stepping stone model. II. Genealogies and the infinite sites model, Ann. Appl. Probab., 15 (2005), 671–699.

    Article  MATH  MathSciNet  Google Scholar 

  201. G. Zipf, Human behavior and the principle of least effort, Hafner, New York, 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Bollobás, B., Riordan, O. (2008). Random Graphs and Branching Processes. In: Bollobás, B., Kozma, R., Miklós, D. (eds) Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69395-6_1

Download citation

Publish with us

Policies and ethics