Skip to main content

Biomedical Nanotechnology Using Virus-Based Nanoparticles

  • Chapter
Viruses and Nanotechnology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 327))

A great challenge in biomedicine is the ability to target therapeutics to specific locations in the body in order to increase therapeutic benefit and minimize adverse effects. Virus-based nanotechnology takes advantage of the natural circulatory and targeting properties of viruses, in order to design therapeutics and vaccines that specifically target tissues of interest in vivo. Cowpea mosaic virus (CPMV) and flock house virus (FHV) nanoparticle-based strategies hold great promise for the design of targeted therapeutics, as well as for structure-based vaccine approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

APC:

Antigen-presenting cell

CCMV:

Cowpea chlorotic mottle virus

CEA:

Carcinoembryonic antigen

CPMV:

Cowpea mosaic virus

CTL:

Cytotoxic T-lymphocyte

cDNA:

Complementary deoxyribonucleic acid

DC:

Dendritic cell,DMSO Dimethyl sulfoxide

ELISA:

Enzyme-linked immunosorbent assay

FA:

Folic acid

FHV:

Flock house virus

MHC:

Major histocompatibility complex

MRI:

Magnetic resonance imaging

NHS:

N-hydroxysuccinimide

NPY:

Neuropeptide Y

QD:

Quantum dots

RNA:

Ribonucleic acid

SWCNT:

Single-walled carbon nanotubes

USPIO:

Ultra-small paramagnetic iron oxide

UV:

Ultraviolet

VNP:

Viral nanoparticles

VLP:

Virus-like particle

References

  • Bevan MJ (1976) Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143:1283

    Article  PubMed  CAS  Google Scholar 

  • Brennan FR, Jones TD, Hamilton WD (2001) Cowpea mosaic virus as a vaccine carrier of heter-ologous antigens. Mol Biotechnol 17:15–26

    Article  PubMed  CAS  Google Scholar 

  • Brumfield S, Willits D, Tang L, Johnson JE, Douglas T, Young M (2004) Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. J Gen Virol 85:1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Buratti E, Tisminetzky SG, Scodeller ES, Baralle FE (1996) Conformational display of two neutralizing epitopes of HIV-1 gp41 on the Flock House virus capsid protein. J Immunol Methods 197:7–18

    Article  PubMed  CAS  Google Scholar 

  • Buratti E, Di Michele M, Song P, Monti-Bragadin C, Scodeller EA, Baralle FE, Tisminetzky SG (1997) Improved reactivity of hepatitis C virus core protein epitopes in a conformational antigen-presenting system. Clin Diagn Lab Immunol 4:117–121

    PubMed  CAS  Google Scholar 

  • Buratti E, McLain L, Tisminetzky S, Cleveland SM, Dimmock NJ, Baralle FE (1998) The neutralizing antibody response against a conserved region of human immunodeficiency virus type 1 gp41 (amino acid residues 731–752) is uniquely directed against a conformational epitope. J Gen Virol 79:2709–2716

    PubMed  CAS  Google Scholar 

  • Canizares MC, Lomonossoff GP, Nicholson L (2005) Development of cowpea mosaic virus-based vectors for the production of vaccines in plants. Expert Rev Vaccines 4:687–697

    Article  PubMed  CAS  Google Scholar 

  • Chao JA, Lee JH, Chapados BR, Debler EW, Schneemann A, Williamson JR (2005) Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nat Struct Mol Biol 12:952–957

    PubMed  CAS  Google Scholar 

  • Chatterji A, Burns LL, Taylor SS, Lomonossoff G, Johnson JE, Lin T, Porta C (2002) Cowpea mosaic virus: from the presentation of antigenic peptides to the display of active biomaterials. Intervirology 45:362–370

    Article  PubMed  CAS  Google Scholar 

  • Chatterji A, Ochoa W, Paine M, Ratna BR, Johnson JE, Lin T (2004a) New addresses on an addressable virus nanoblock: uniquely reactive lys residues on cowpea mosaic virus. Chem Biol 11:855–863

    Article  CAS  Google Scholar 

  • Chatterji A, Ochoa W, Shamieh L, Salakian SP, Wong SM, Clingon G, Ghosh P, Lint T, Johnson J (2004b) Chemical conjugation of heterologous proteins on the surface of cowpea mosaic virus. Bioconjug Chem 15:807–813

    Article  CAS  Google Scholar 

  • Da Silva DM, Schiller JT, Kast M (2003) Heterologous boosting increases immunogenicity of chimeric papillomavirus virus-like particle vaccines. Vaccine 21:3219–3227

    Article  PubMed  Google Scholar 

  • Dalsgaard K, Uttenthal A, Jones TD, Xu F, Merryweather A, Hamilton W, Langeveld J, Boshuizen R, Kamstrup S, Lomonossoff G, Porta C, Vela C, Casal J, Meloen R, Rodgers P (1997) Plant-derived vaccine protects target animals against a viral disease. Nat Biotechnol 15:248–252

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta R, Ghosh A, Dasmahapatra B, Guarino LA, Kaesberg P (1984) Primary and secondary structure of black beetle virus RNA2, the genomic messenger for BBV coat protein precursor. Nucleic Acids Res 12:7215–7223

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta R, Ghosh A, Dasmahapatra B, Guarino LA, Kaesberg P (1984) Primary and secondary structure of black beetle virus RNA2, the genomic messenger for BBV coat protein precursor. Nucleic Acids Res 12:7215–7223

    Article  PubMed  CAS  Google Scholar 

  • Douglas T, Young MJ (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  • Douglas T, Young M (1999) Virus particles as templates for materials synthesis. Adv Mater 11:679–681

    Article  CAS  Google Scholar 

  • Durrani Z, McInerney TL, McLain L, Jones T, Bellaby T, Brennan FR, Dimmock NJ (1998) Intranasal immunization with a plant virus expressing a peptide from HIV-1 gp41 stimulates better mucosal and systemic HIV-1-specific IgA and IgG than oral immunization. J Immunol Meth 220:93–103

    Article  CAS  Google Scholar 

  • Engler H, Machemer T, Philopena J, Wen SF, Quijano E, Ramachandra M, Tsai V, Ralston R (2004) Acute hepatoxicity of oncolytic adenoviruses in mouse models is associated with expression of wild-type E1a and induction of TNF-alpha. Virology 328:52–61

    Article  PubMed  CAS  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  PubMed  CAS  Google Scholar 

  • Flenniken ML, Willits D, Harmsen AL, Liepold LO, Harmsen AJ, Young MJ, Douglas T (2006) Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem Biol 13:161–170

    Article  PubMed  CAS  Google Scholar 

  • Friesen PD, Rueckert RR (1981) Synthesis of black beetle virus proteins in cultured Drosophila cells: differential expression of RNAs 1 and 2. J Virol 37:876–886

    PubMed  CAS  Google Scholar 

  • Friesen PD, Rueckert RR (1982) Black beetle virus: messenger for protein B is a subgenomic viral RNA. J Virol 42:986–995

    PubMed  CAS  Google Scholar 

  • Gallagher T, Rueckert RR (1988) Assembly-dependent maturation cleavage in provirions of a small icosahedral insect ribovirus. J Virol 62:3399–3406

    PubMed  CAS  Google Scholar 

  • Gilleland HE, Gilleland LB, Staczek J, Harty RN, Garcia-Sastre A, Palese P, Brennan FR, Hamilton WD, Bendahmane M, Beachy RN (2000) Chimeric animal and plant viruses expressing epitopes of outer membrane protein F as a combined vaccine against Pseudomonas aeruginosa lung infection. FEMS Immunol Med Microbiol 27:291–297

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg DM (1992) Cancer imaging with CEA antibodies: historical and current perspectives. Int J Biol Markers 7:183–188

    PubMed  CAS  Google Scholar 

  • Gordon EA, Kohout TA, Fishman PH (1990) Characterization of functional neuropeptide-Y receptors in a neuroblastoma cell-line. J Neurochemistry 55:506–513

    Article  CAS  Google Scholar 

  • Hammarstrom S, Shively JE, Paxton RJ, Beatty BG, Larsson A, Ghosh R, Bormer O, Buchegger F, Mach JP, Burtin P et al (1989) Antigenic sites in carcinoembryonic antigen. Cancer Res 49:4852–4858

    PubMed  CAS  Google Scholar 

  • Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  • Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Ann Rev Immunol 19:47

    Article  CAS  Google Scholar 

  • Hooker JM, Kovacs EW, Francis MB (2004) Interior surface modification of bacteriophage MS2. J Am Chem Soc 126:3718–3719

    Article  PubMed  CAS  Google Scholar 

  • Johnson J, Lin T, Lomonossoff G (1997) Presentation of heterologous peptides on plant viruses: genetics, structure, and function. Annu Rev Phytopathol 35:67–86

    Article  PubMed  CAS  Google Scholar 

  • Khor IW, Lin T, Langedijk JP, Johnson JE, Manchester M (2002) Novel strategy for inhibiting viral entry by use of a cellular receptor-plant virus chimera. J Virol 76:4412–4419

    Article  PubMed  CAS  Google Scholar 

  • Kickhoefer VA, Garcia Y, Mikyas Y, Johansson E, Zhou JC, Raval-Fernandes S, Minoofar P, Zink JI, Dunn B, Stewart PL, Rome LH (2005) Engineering of vault nanocapsules with enzymatic and fluorescent properties. Proc Natl Acad Sci U S A 102:4348–4352

    Article  PubMed  CAS  Google Scholar 

  • Klem MT, Willits D, Young M, Douglas T (2003) 2-D array formation of genetically engineered viral cages on au surfaces and imaging by atomic force microscopy. J Am Chem Soc 125:10806–10807

    Article  PubMed  CAS  Google Scholar 

  • Koudelka K, Rae CS, Gonzalez MJ, Manchester M (2007) Interaction between a 54-kilodalton mammalian cell surface protein and cowpea mosaic virus. J Virol 81:1632–1640

    Article  PubMed  CAS  Google Scholar 

  • Krishna NK, Schneemann A (1999) Formation of an RNA heterodimer upon heating of nodavirus particles. J Virol 73:1699–1703

    PubMed  CAS  Google Scholar 

  • Larhammar D, Blomqvist AG, Yee F, Jazin E, Yoo H, Wahlested C (1992) Cloning and functional expression of a human neuropeptide Y/peptide YY receptor of the Y1 type. J Biol Chem 267:10935–10938

    PubMed  CAS  Google Scholar 

  • Lee SW, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895

    Article  PubMed  CAS  Google Scholar 

  • Levy LS, Yudhisthira A, Kim K-S, Bergey EJ; Prasad Paras N (2002) Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem Mater 14:3715–3721

    Article  CAS  Google Scholar 

  • Lewis JD, Destito G, Zjilstra A, Gonzalez MJ, Quigley J, Manchester M, Stuhlmann H (2006) Viral nanoparticles (VNPs) as tools for intravital vascular imaging. Nat Med 12:354–360

    Article  PubMed  CAS  Google Scholar 

  • Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296:1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Chen Z, Usha R, Stauffacher C, Dai J, Schmidt T, Johnson JE (1999) The refined crystal structure of cowpea mosaic virus at 2.8 A resolution. Virology 265:20–34

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Canizares MC, Monger W, Perrin Y, Tsakiris E, Porta C, Shariat N, Nicholson L, Lomonossoff GP (2005) Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants. Vaccine 23:1788–1792

    Article  PubMed  CAS  Google Scholar 

  • Lomonossoff G, Johnson J (1991) The synthesis and structure of comovirus capsids. Program Biophys Molec Biol 55:107–137

    Article  CAS  Google Scholar 

  • Lomonossoff G, Rohll J, Spall V, Maule A, Loveland J, Porta C, Usha R, Johnson J (1993) Insertion of foreign antigenic sites into the plant virus cowpea mosaic virus protein engineering. II. In: Goodenough P (ed) Proceedings of the Second AFRC Protein Engineering Conference. 1CPL Press, Newbury, UK, pp 30–138

    Google Scholar 

  • Manayani DJ, Thomas D, Dryden KA, Reddy V, Siladi ME, Marlett JM, Rainey GJ, Pique ME, Scobie HM, Yeager M, Young JA, Manchester M, Schneemann A (2007) A viral nanoparticle with dual function as an anthrax antitoxin and vaccine. PLoS Pathog 3:1422–1431

    Article  PubMed  CAS  Google Scholar 

  • Mandl S, Hix L, Andino R (2001) Preexisting immunity to poliovirus does not impair the efficacy of recombinant poliovirus vaccine vectors. J Virol 75:622–627

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Flynn CE, Hayhurst A, Sweeney RY, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci U S A 100:6946–6951

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303:213–217

    Article  PubMed  CAS  Google Scholar 

  • Martinez X, Regner M, Kovarik J, Zarei S, Hauser C, Lambert PH, Leclerc C, Siegrist CA (2003) CD4-independent protective cytotoxic T cells induced in early life by a non-replicative delivery system based on virus-like particles. Virology 305:428–435

    Article  PubMed  CAS  Google Scholar 

  • Mechtcheriakova IA, Eldarov MA, Nicholson L, Shanks M, Skryabin KG, Lomonossoff GP (2005) The use of viral vectors to produce hepatitis B virus core particles in plants. J Virol Methods 131:10–15

    Article  PubMed  Google Scholar 

  • Michel MC, Beck-Sickinger AG, Cox H, Doods HN, Herzog H, Larhammar D, Quirion R, Schwartz T, Westfall T (1998) XVI International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide Y Y, and pancreatic polypeptide receptors. Pharmacol Rev 50:143–150

    PubMed  CAS  Google Scholar 

  • Morawski AM, Winter PM, Crowder KC, Caruthers SD, Fuhrhop RW, Scott MJ, Robertson JD, Abendschein DR, Lanza GM, Wickline SA (2004) Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51:480–486

    Article  PubMed  CAS  Google Scholar 

  • Phelps JP, Dang N, Rasochova L (2007) Inactivation and purification of cowpea mosaic virus-like particles displaying peptide antigens from Bacillus anthracis. J Virol Methods 141:146–153

    Article  PubMed  CAS  Google Scholar 

  • Porta C, Spall VE, Lin T, Johnson JE, Lomonossoff GP (1996) The development of cowpea mosaic virus as a potential source of novel vaccines. Intervirology 39:79–84

    PubMed  CAS  Google Scholar 

  • Portney NG, Singh K, Chaudhary SK, Stephens J, Destito G, Schneemann A, Manchester M, Ozkan M (2005) Organic and Inorganic nanoparticle hybrids. Langmuir 21:2098–2103

    Article  PubMed  CAS  Google Scholar 

  • Prasuhn DE Jr, Singh P, Strable E, Brown S, Manchester M, Finn MG (2008) Plasma clearance of bacteriophage Qbeta particles as a function of surface charge. J Am Chem Soc 130:1328–1334

    Article  PubMed  CAS  Google Scholar 

  • Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mule J, Baker JR Jr (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19:1310–1316

    Article  PubMed  CAS  Google Scholar 

  • Rae CS, Wei Khor I, Wang Q, Destito G, Gonzalez MJ, Singh P, Thomas DM, Estrada MN, Powell E, Finn MG, Manchester M (2005) Systemic trafficking of plant virus nanoparticles in mice via the oral route. Virology 343:224–235

    Article  PubMed  CAS  Google Scholar 

  • Raja KS, Wang Q, Gonzalez MJ, Manchester M, Johnson JE, Finn MG (2003) Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules 4:472–476

    Article  PubMed  CAS  Google Scholar 

  • Rennermalm A, Li YH, Bohaufs L, Jarstrand C, Brauner A, Brennan FR, Flock JI (2001) Antibodies against a truncated Staphylococcus aureus fibronectin-binding protein protect against dissemination of infection in the rat. Vaccine 19:3376–3383

    Article  PubMed  CAS  Google Scholar 

  • Ruedl C, Schwarz K, Jegerlehner A, Storni T, Manolova V, Bachmann MF (2005) Virus-like particles as carriers for T-cell epitopes: limited inhibition of T-cell priming by carrier-specific antibodies. J Virol 79:717–724

    Article  PubMed  CAS  Google Scholar 

  • Schiappacassi M, Buratti E, D'Agaro P, Ciani L, Scodeller ES, Tisminetzky SG, Baralle FE (1997) V3 loop core region serotyping of HIV-1 infected patients using the FHV epitope presenting system. J Virol Methods 63:121–127

    Article  PubMed  CAS  Google Scholar 

  • Schneemann A, Zhong W, Gallagher TM, Rueckert RR (1992) Maturation cleavage required for infectivity of a nodavirus. J Virol. 66:6728–6734

    PubMed  CAS  Google Scholar 

  • Scodeller EA, Tisminetzky SG, Porro F, Schiappacassi M, De Rossi A, Chiecco-Bianchi L, Baralle FE (1995) A new epitope presenting system displays a HIV-1 V3 loop sequence and induces neutralizing antibodies. Vaccine 13:1233–1239

    Article  PubMed  CAS  Google Scholar 

  • Sedlik C, Saron M, Sarraseca J, Casal I, Leclerc C (1997) Recombinant parvovirus-like particles as an antigen carrier: a novel nonreplicating exogenous antigen to elicit protective antiviral cytotoxic T cells. Proc Natl Acad Sci U S A 94:7503–7508

    Article  PubMed  CAS  Google Scholar 

  • Sen Gupta S, Kuzelka J, Singh P, Lewis WG, Manchester M, Finn MG (2005a) Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjug Chem 16:1572–1579

    Article  CAS  Google Scholar 

  • Sen Gupta S, Raja KS, Kaltgrad E, Strable E, Finn MG (2005b) Virus-glycopolymer conjugates by copper(I) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition. Chem Commun (Camb) 4315–4317

    Google Scholar 

  • Singh P, Gonzalez MJ, Manchester M (2005) Viruses and their uses in nanotechnology. Drug Dev Res 343:224–235

    Google Scholar 

  • Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, Finn MG, Manchester M (2007) Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release 120:41–50

    Article  PubMed  CAS  Google Scholar 

  • Soll RM, Dinger MC, Lundell I, Larhammer D, Beck-Sickinger AG (2001) Novel analogues of neuropeptide Y with a preference for the Y1-receptor. Eur J Biochem 268:2828–2837

    Article  PubMed  CAS  Google Scholar 

  • Strable E, Johnson JE, Finn MG (2004) Natural nanochemical building blocks: Icosahedral virus particles organized by attached oligonucleotides. NanoLetters 4:1385–1389

    CAS  Google Scholar 

  • Taylor K, Lin T, Porta C, Mosser A, Giesing H, Lomonossoff G, Johnson J (2000) Influence of three-dimensional structure on the immunogenicity of a peptide expressed on the surface of a plant virus. J Mol Recognit 13:71–82

    Article  PubMed  CAS  Google Scholar 

  • Thiery R, Cozien J, Cabon J, Lamour F, Baud M, Schneemann A (2006) Induction of a protective immune response against viral nervous necrosis in the European sea bass Dicentrarchus labrax by using betanodavirus virus-like particles. J Virol 80:10201–1027

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Kaltgrad E, Lin T, Johnson J, Finn M (2002a) Natural supramolecular building blocks: wild-type cowpea mosaic virus. Chem Biol 9:805–811

    Article  CAS  Google Scholar 

  • Wang Q, Lin T, Johnson J, Finn M (2002b) Natural supramolecular building blocks: cysteine-added mutants of cowpea mosaic virus. Chem Biol 9:813–819

    Article  CAS  Google Scholar 

  • Wang Q, Lin T, Tang L, Johnson J, Finn M (2002c) Icosahedral virus particles as addressable nanoscale building blocks. Angew Chem Int Ed 41:459–462

    Article  CAS  Google Scholar 

  • Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc 125:3192–3193

    Article  PubMed  CAS  Google Scholar 

  • Yasawardene SG, Lomonossoff GP, Ramasamy R (2003) Expression, immunogenicity of malaria merozoite peptides displayed on the small coat protein of chimaeric cowpea mosaic virus. Indian J Med Res 118:115–124

    PubMed  CAS  Google Scholar 

  • Yewdell J, Anton LC, Bacik I, Schubert U, Snyder HL, Bennink JR (1999a) Generating MHC class I ligands from viral gene products. Immunol Rev 172:97–108

    Article  CAS  Google Scholar 

  • Yewdell JW, Norbury CC, Bennink JR (1999b) Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8 T-cell responses to infectious agents, tumors, transplants and vaccines. Adv Immunol 73:1–77

    Article  CAS  Google Scholar 

  • Zinkernagel R (2002) On cross-priming of MHC class I-specific CTL: rule or exception? Eur J Immunol 32:2385–2392

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Destito, G., Schneemann, A., Manchester, M. (2009). Biomedical Nanotechnology Using Virus-Based Nanoparticles. In: Manchester, M., Steinmetz, N.F. (eds) Viruses and Nanotechnology. Current Topics in Microbiology and Immunology, vol 327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69379-6_5

Download citation

Publish with us

Policies and ethics