Skip to main content
  • 3136 Accesses

Abstract

Normal human skin supports the growth of commensal microflora and it is colonized with a wide variety of microorganisms such as Propionibacterium acnes (P. acnes), Staphylococcus epidermidis, and Malassezia furfur. In addition to normal flora, the skin is constantly challenged by a large number of external pathogens, most of which do not cause clinical symptoms. Importantly, in healthy individuals, the deeper layers of the skin remain free of infections suggesting that skin has the ability to fight against invading microbes [1]. Indeed, skin has a powerful innate immune system that protects the host from bacterial and fungal infections. Within the epidermis, keratinocytes and sebocytes represent two, immunologically active cell types, which are able to identify and kill invading microbes. Keratinocytes and sebocytes recognize highly conserved structures of the pathogens, termed Pathogen-Associated Molecular Patterns (PAMPs), by Pattern Recognition Receptors (PRRs), such as Toll-like Receptors (TLRs). Signaling through PRRs activates a chemical cutaneous defense system which results in the production of pro-inflammatory cytokines/chemokines and antimicrobial peptides. Within the skin, these mediators possess dual function: they not only display direct microbicidal activity but also attract professional immune cells. Therefore, pro-inflammatory mediators play crucial role in a number of skin infections, forming complicated networks between keratinocytes, sebocytes, and infiltrates of immune cells. This crosstalk occurs, partly, via antimicrobial peptides and their receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pivarcsi A, Nagy I, Kemeny L. Innate immunity in the skin: how keratinocytes fight against pathogens. Curr Immunol Rev. 2005;1:29–42.

    Article  CAS  Google Scholar 

  2. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  CAS  PubMed  Google Scholar 

  3. Pivarcsi A, Nagy I, Kemeny L. Innate immunity in the skin: how keratinocytes fight against pathogens. Curr Immunol Rev. 2005;11:29–42.

    Article  Google Scholar 

  4. Barker JN, Jones ML, Mitra RS, et al. Modulation of keratinocyte-derived interleukin-8 which is chemotactic for neutrophils and T lymphocytes. Am J Pathol. 1991;1394:869–76.

    Google Scholar 

  5. Barker JN, Mitra RS, Griffiths CE, et al. Keratinocytes as initiators of inflammation. Lancet. 1991;3378735:211–4.

    Article  Google Scholar 

  6. Baker BS, Ovigne JM, Powles AV, et al. Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol. 2003;1484:670–9.

    Article  Google Scholar 

  7. Lebre MC, van der Aar AM, van Baarsen L, et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol. 2007;1272:331–41.

    Article  Google Scholar 

  8. Kawai K, Shimura H, Minagawa M, et al. Expression of functional Toll-like receptor 2 on human epidermal keratinocytes. J Dermatol Sci. 2002;303:185–94.

    Article  Google Scholar 

  9. Mempel M, Voelcker V, Kollisch G, et al. Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol. 2003;1216:1389–96.

    Article  Google Scholar 

  10. Pivarcsi A, Bodai L, Rethi B, et al. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol. 2003;156:721–30.

    Article  Google Scholar 

  11. Song PI, Park YM, Abraham T, et al. Human keratinocytes express functional CD14 and toll-like receptor 4. J Invest Dermatol. 2002;1192:424–32.

    Article  Google Scholar 

  12. Voss E, Wehkamp J, Wehkamp K, et al. NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem. 2006;2814:2005–11.

    Article  Google Scholar 

  13. Sugita K, Kabashima K, Atarashi K, et al. Innate immunity mediated by epidermal keratinocytes promotes acquired immunity involving Langerhans cells and T cells in the skin. Clin Exp Immunol. 2007;1471:176–83.

    Google Scholar 

  14. Gallo RL, Huttner KM. Antimicrobial peptides: an emerging concept in cutaneous biology. J Invest Dermatol. 1998;1115:739–43.

    Article  Google Scholar 

  15. Nizet V, Ohtake T, Lauth X, et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature. 2001;4146862:454–7.

    Article  Google Scholar 

  16. Frohm M, Agerberth B, Ahangari G, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem. 1997;27224:15258–63.

    Article  Google Scholar 

  17. Harder J, Bartels J, Christophers E, et al. A peptide antibiotic from human skin. Nature. 1997;3876636:861.

    Article  Google Scholar 

  18. Liu AY, Destoumieux D, Wong AV, et al. Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol. 2002;1182:275–81.

    Article  Google Scholar 

  19. Heilborn JD, Nilsson MF, Kratz G, et al. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol. 2003;1203:379–89.

    Article  Google Scholar 

  20. Schroder JM, Harder J. Human beta-defensin-2. Int J Biochem Cell Biol. 1999;316:645–51.

    Article  Google Scholar 

  21. Harder J, Meyer-Hoffert U, Wehkamp K, et al. Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol. 2004;1233:522–9.

    Article  Google Scholar 

  22. Nagy I, Pivarcsi A, Kis K, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 2006;88:2195–205.

    Article  Google Scholar 

  23. Nagy I, Pivarcsi A, Koreck A, et al. Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol. 2005;1245:931–8.

    Article  Google Scholar 

  24. Trivedi NR, Gilliland KL, Zhao W, et al. Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling. J Invest Dermatol. 2006;1265:1071–9.

    Article  Google Scholar 

  25. Yang D, Chertov O, Bykovskaia SN, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;2865439:525–8.

    Article  Google Scholar 

  26. Ali RS, Falconer A, Ikram M, et al. Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J Invest Dermatol. 2001;1171:106–11.

    Article  Google Scholar 

  27. Fulton C, Anderson GM, Zasloff M, et al. Expression of natural peptide antibiotics in human skin. Lancet. 1997;3509093:1750–1.

    Article  Google Scholar 

  28. Chronnell CM, Ghali LR, Ali RS, et al. Human beta defensin-1 and -2 expression in human pilosebaceous units: upregulation in acne vulgaris lesions. J Invest Dermatol. 2001;1175:1120–5.

    Article  Google Scholar 

  29. Oren A, Ganz T, Liu L, et al. In human epidermis, beta-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol. 2003;742:180–2.

    Article  Google Scholar 

  30. Chadebech P, Goidin D, Jacquet C, et al. Use of human reconstructed epidermis to analyze the regulation of beta-defensin hBD-1, hBD-2, and hBD-3 expression in response to LPS. Cell Biol Toxicol. 2003;195:313–24.

    Article  Google Scholar 

  31. Chung WO, Dale BA. Innate immune response of oral and foreskin keratinocytes: utilization of different signaling pathways by various bacterial species. Infect Immun. 2004;721:352–8.

    Article  Google Scholar 

  32. Dinulos JG, Mentele L, Fredericks LP, et al. Keratinocyte expression of human beta defensin 2 following bacterial infection: role in cutaneous host defense. Clin Diagn Lab Immunol. 2003;101:161–6.

    Google Scholar 

  33. Kopp E, Medzhitov R. Skin antibiotics get in the loop. Nat Med. 2002;812:1359–60.

    Article  Google Scholar 

  34. Sorensen OE, Follin P, Johnsen AH, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood. 2001;9712:3951–9.

    Article  Google Scholar 

  35. Murakami M, Ohtake T, Dorschner RA, et al. Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol. 2002;1195:1090–5.

    Article  Google Scholar 

  36. Niyonsaba F, Iwabuchi K, Someya A, et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology. 2002;1061:20–6.

    Article  Google Scholar 

  37. Dorschner RA, Pestonjamasp VK, Tamakuwala S, et al. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol. 2001;1171:91–7.

    Article  Google Scholar 

  38. Koczulla R, von Degenfeld G, Kupatt C, et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest. 2003;11111:1665–72.

    Article  Google Scholar 

  39. Lee DY, Yamasaki K, Rudsil J, et al. Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill propionibacterium acnes. J Invest Dermatol. 2008;128(7):1863–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;34715:1151–60.

    Article  Google Scholar 

  41. Yamasaki K, Di Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;138:975–80.

    Article  Google Scholar 

  42. Stenger S, Hanson DA, Teitelbaum R, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998;2825386:121–5.

    Article  Google Scholar 

  43. Deng A, Chen S, Li Q, et al. Granulysin, a cytolytic molecule, is also a chemoattractant and proinflammatory activator. J Immunol. 2005;1749:5243–8.

    Article  Google Scholar 

  44. Krensky AM, Clayberger C. Granulysin: a novel host defense molecule. Am J Transplant. 2005;58:1789–92.

    Article  Google Scholar 

  45. McInturff JE, Wang SJ, Machleidt T, et al. Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against Propionibacterium acnes. J Invest Dermatol. 2005;1252:256–63.

    Google Scholar 

  46. Zouboulis CC. Is acne vulgaris a genuine inflammatory disease? Dermatology. 2034;2001:277–9.

    Google Scholar 

  47. Zouboulis CC, Nestoris S, Adler YD, et al. A new concept for acne therapy: a pilot study with zileuton, an oral 5-lipoxygenase inhibitor. Arch Dermatol. 2003;1395:668–70.

    Google Scholar 

  48. Schroder JM, Harder J. Antimicrobial skin peptides and proteins. Cell Mol Life Sci. 2006;634:469–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lajos Kemény .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagy, I., Kemény, L. (2014). Antimicrobial Peptides in Acne. In: Zouboulis, C., Katsambas, A., Kligman, A. (eds) Pathogenesis and Treatment of Acne and Rosacea. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69375-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69375-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69374-1

  • Online ISBN: 978-3-540-69375-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics