Skip to main content

Very Old DNA

  • Chapter
Permafrost Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 16))

In early years, the field of ancient DNA was largely a race on breaking age boundaries resulting in outrageous reports that later proved due to contamination. An improved understanding of the processes responsible for DNA degradation and the effects of damage on ancient DNA templates and contamination risk have started providing a more solid basis for research. However, the field is still regularly flawed by reports that underestimate the extent of contamination within laboratories and samples themselves. Although a number of criteria and guidelines have been created to improve research quality within the field, these are not followed on a regular basis. Unfortunately, lack of proper models for DNA decay makes it uncertain, exactly how long time DNA can survive under various preservation conditions. Still, empirical studies and theoretical considerations suggest that when it comes to both molecule and cell long-term survival, frozen conditions appears superior to other conditions. Recent advantages in studies of very old DNA include amplifiable animal and plant ancient DNA from 450,000-800,000 year old glacial ice and the amplification of DNA from viable bacteria obtained from permafrost (frozen soil) about half a million years in age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adcock GJ, Dennis ES, Easteal S, Huttley GA, Jermin LS, Peacock WJ, Thome A (2001) Mitochondrial DNA sequences in ancient Australians: Implications for modern human origins. Proc Natl Acad Sci USA 98:537–542

    Article  PubMed  CAS  Google Scholar 

  • Bidle KD, Lee S, Marchant DR, Falkowski PG (2007) Fossil genes and microbes in the oldest ice on Earth. Proc Natl Acad Sci USA 104:13455–13460

    Article  PubMed  CAS  Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268:1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Cano RJ, Poinar HN, Poinar Jr GO (1992a) Isolation and partial characterisation of DNA from the bee Proplebeia dominicana (Apidae: Hymenoptera) in 25–40 million-year-old amber. Med Sci Res 20:249–251

    CAS  Google Scholar 

  • Cano RJ, Poinar HN, Roublik DW, Poinar GO Jr (1992b) Enzymatic amplification and nucleotide sequencing of portions of the 18S rRNA gene of the bee Proplebeia dominicana (Apidae: Hymenoptera) isolated from 25–40 million-year-old Dominican amber. Med Sci Res 20:619–622

    CAS  Google Scholar 

  • Cano RJ, Poinar HN, Pieniezak, NS, Poinar Jr GO (1993) Enzymatic amplification and nucleotide sequencing of DNA from 120–135 million-year-old weevil. Nature 363:536–538

    Article  PubMed  CAS  Google Scholar 

  • Cooper A (1993) DNA from museum specimens. In: Herrmann B, Hummel S (eds) Ancient DNA. Springer, New York, pp 149–165

    Google Scholar 

  • Cooper A, Poinar HN (2001) Ancient DNA: Do it right or not at all. Science 18:289

    Google Scholar 

  • DeSalle R (1994) Implications of ancient DNA for phylogenetic studies. Experientia 50:543–550

    Article  PubMed  CAS  Google Scholar 

  • DeSalle R, Gatesy J, Wheeler W, Grimaldi D (1992) DNA Sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257:1933–1936

    Article  PubMed  CAS  Google Scholar 

  • DeSalle R, Barcia M, Wray C (1993) PCR jumping in clones of 30-million-year-old DNA fragments from amber preserved termites (Mastotermes electrodominicus). Experientia 49:906–909

    Article  PubMed  CAS  Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436

    Article  PubMed  CAS  Google Scholar 

  • Gilbert MTP, Barnes I, Collins MJ, Smith C, Eklund J, Goudsmit J, Poinar H, Cooper A (2005a) News and Comments: The long-term survival of ancient DNA in Egypt: Response to Zink and Nerlich. Am J Phys Anth 128:110–114

    Article  Google Scholar 

  • Gilbert MTP, Bandelt H, Hofreiter M, Barnes I (2005b) Assessing ancient DNA studies. Trends Ecol Evol 20:541–544

    Article  PubMed  Google Scholar 

  • Goldenberg EM, Giannassi DE, Clegg MT, Smiley CJ, Durbin M, Henderson D, Zurawski G (1990) Chloroplast DNA from a Miocene Magnolia species. Nature 344:656–658

    Article  Google Scholar 

  • Graur D, Pupko T (2001) The Permian bacterium that isn’t. Mol Biol Evol 18:1143–1146

    PubMed  CAS  Google Scholar 

  • Haile J, Holdaway R, Oliver K, Bunce M, Gilbert MTP, Nielsen R, Munch K, Ho SYW, Willerslev E (2007) Ancient DNA chronology within sediment deposits: Are paleobiological reconstructions possible and is DNA leaching a factor? Mol Biol Evol 24:982–989

    Article  PubMed  CAS  Google Scholar 

  • Handt O, Höss M, Krings M, Pääbo S (1994) Ancient DNA: Methodological challenges. Experientia 50:524–529

    Article  PubMed  CAS  Google Scholar 

  • Hansen AJ, Mitchel DL, Rønn R, Wiuf C, Paniker L, Biladen J, Brand TB, Gilichinsky DA, Willerslev E (2006) Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 2:1175–1179

    Article  CAS  Google Scholar 

  • Hebsgaard MB, Phillips MJ, Willerslev E (2005) Geologically ancient DNA: Fact or artefact? Trends Microbiol 13:212–220

    Article  PubMed  CAS  Google Scholar 

  • Hebsgaard MB, Wiuf C, Gilbert MTP, Glenner H, Willerslev E (2007) Evaluating Neandertal genetics and phylogeny. J Mol Evol 64:50–60

    Article  PubMed  CAS  Google Scholar 

  • Hofreiter M, Jaenicke V, Serre S, von Haeseler A, Pääbo S (2001a) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucl Acid Res 29:4793–47799

    Article  CAS  Google Scholar 

  • Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001b) Ancient DNA. Nature Rev Genet 2:353–360

    Article  CAS  PubMed  Google Scholar 

  • Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Brand TB, Gilbert MTP, Zuber MT, Bunce M, Rønn R, Gilichinsky D, Froese DG, Willerslev E (2007) Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci USA 104:14401–14405

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MJ, Reader SL, Swierczynski LM (1994) Preservation records of microorganisms: Evidence of the tenacity of life. Microbiology 140:2513–2529

    Article  PubMed  Google Scholar 

  • Kim S, Soltis DE, Soltis PS, Sue Y (2004) DNA sequences from Miocene fossils: An ndhF sequence of Magnolia latahensis (Magnoliaceae) and an rbcL sequence of Persea pseudocarolinensis (Lauraceae). Am J Bot 91:615–620

    Article  CAS  Google Scholar 

  • Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90:19–30

    Article  PubMed  CAS  Google Scholar 

  • Krings M, Geisert H, Schmitz R, Krainitzki H, Pääbo S (1999) DNA sequence of the mitochondrial hypervariable region II from the Neanderthal type specimen. Proc Natl Acad Sci USA 96:5581–5585

    Article  PubMed  CAS  Google Scholar 

  • Krings M, Capelli C, Tschentscher F, Geisert H, Meyer S, von Haeseler A, Grossschmidt K, Possnert G, Paunovic M, Pääbo S (2000) A view of Neandertal genetic diversity. Nature Genet 26:144–146

    Article  PubMed  CAS  Google Scholar 

  • Lalueza-Fox C, Sampietro ML, Caramelli D, Puder Y, Lari M, Calafell F, Martínez-Maza C, Bastir M, Fortea J, de la Rasilla M, Bertranpetit J, Rosas A (2005) Neandertal evolutionary genetics: Mitochondrial DNA data from the Iberian peninsula. Mol Biol Evol 22:1077–1081

    Article  PubMed  CAS  Google Scholar 

  • Lambert DM, Ritchie PA, Millar CD, Holland BJ, Drummond A, Baroni C (2001) Rates of evolution in ancient DNA from Adelie penguins. Science 295:2270–2273

    Article  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  PubMed  CAS  Google Scholar 

  • Marota I, Rollo F (2002) Molecular paleontology. Cell Mol Life Sci 59:97–111

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Richards M, Trewick SA, Wallis GP (2001) Chromosome races with Pliocene origins: Evidence from mtDNA. Nature 86:303–312

    CAS  Google Scholar 

  • Morita RY (2000) Is H2 the universal energy source for long-term survival? Microb Ecol 38:307–320

    Article  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of bacterial endospores to extreme terrestrial and extraterrestrial environments. Mol Biol Rev 64:548–572

    Article  CAS  Google Scholar 

  • Nickle DC, Learn GH, Rain MW, Mullins JI, Mittler JE (2002) Curiously modern DNA for a “250 Million-Year-Old” bacterium. J Mol Evol 54:134–137

    Article  PubMed  CAS  Google Scholar 

  • Ovchinnikov I, Götherström A, Romanova G, Kharitonov V, Lidén K, Goodwin W (2000) Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404:490–493

    Article  PubMed  CAS  Google Scholar 

  • Pääbo S (1989) Ancient DNA; extraction characterization molecular cloning and enzymatic amplification. Proc Natl Acad Sci USA 86:1939–1943

    Article  PubMed  Google Scholar 

  • Pääbo S, Wilson AC (1988) Polymerase chain reaction reveals cloning artefacts. Nature 334:387–388

    Article  PubMed  Google Scholar 

  • Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–79

    Article  PubMed  CAS  Google Scholar 

  • Poinar HN, Poinar Jr GO, Cano RJ (1993) DNA from an extinct plant. Nature 363:677

    Article  Google Scholar 

  • Poinar HN, Höss M, Bada JL, Pääbo S (1996) Amino acid racemization and the preservation of ancient DNA. Science 272:864–866

    Article  PubMed  CAS  Google Scholar 

  • Pusch CM, Bachmann L (2004) Spiking of contemporary human template DNA with ancient DNA extracts induces mutations under PCR and generates non-authentic mitochondrial sequences. Mol Biol Evol 21:957–964

    Article  PubMed  CAS  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  PubMed  CAS  Google Scholar 

  • Rollo F, Marota I (1999) How microbial ancient DNA found in association with human remains can be interpreted. Philos Trans R Soc Lond B 354:111–119

    Article  CAS  Google Scholar 

  • Schmitz RW, Serre D, Bonani G, Feine S, Hillgruber F, Krainitzki H, Pääbo S, Smith FH (2002) The Neanderthal type-site revisited: Interdisciplinary investigations of skeletal remains from the Neander Valley Germany. Proc Natl Acad Sci USA 99:13342–13347

    Article  PubMed  CAS  Google Scholar 

  • Serre D, Langaney A, Chech M, Teschler-Nicola M, Paunovic M, Mennecier P, Hofreiter M, Possnert G, Pääbo S (2004) No evidence of Neandertal mtDNA contribution to early modern humans. PLOS Biol 2:313–317.

    Article  CAS  Google Scholar 

  • Shapiro B, Drummond A, Rambaut A, Pybus O, Gilbert MTP, Wilson M, Matheus P, Sher A, Binladen J, Willerslev E, Hansen AJ, Barnes I, Kunz M, Harington CR, Tedford R, Stephenson R, Burns J, Storer J, Baryshnikov GF, Chenqi L, Zimov S, Vorobiev AA, Guthrie D, Driver JC, Martin LD, Cooper A (2004) The impact of large-scale climate change on genetic diversity in large mammal populations. Science 306:1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Smith CI, Chamberlain AT, Riley MS, Cooper A, Stringer CB, Collins MJ (2001) Neanderthal DNA: Not just old but old and cold? Nature 10:771–772

    Article  Google Scholar 

  • Soltis PS, Soltis DE, Smiley CJ (1992) An rbcL sequence from a Miocene Taxodium (bald cypress). Proc Natl Acad Sci USA 89:449–451

    Article  PubMed  CAS  Google Scholar 

  • Vreeland RH, Rosenzweig WD (2002) The question of uniqueness of ancient bacteria. J Ind Microbiol Biotechnol 28:32–41

    Article  PubMed  CAS  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    Article  PubMed  CAS  Google Scholar 

  • Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc London B 272:3–16

    Article  CAS  Google Scholar 

  • Willerslev E, Hebsgaard MB (2005) New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal: Comment. Geology, published Online: November 2005, doi 10.1130/0091-7613(2005)31 2.0.CO;2

    Google Scholar 

  • Willerslev E, Hansen AJ, Brand TB, Binladen J, Gilbert TMP, Shaperio B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animal DNA from Holocene and Pleistocene sedimentary records. Science 300:792–795

    Article  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Brand TB, Rønn R, Barnes I, Wiuf C, Gilichinsky DA, Mitchell D, Cooper A (2004a) Long-term persistence of bacterial DNA. Curr Biol 14:R9–R10

    Article  PubMed  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Poinar HN (2004b) Isolation of nucleic acids and cultures from ice and permafrost. Trends Ecol Evol 19:141–147

    Article  PubMed  Google Scholar 

  • Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB, Brand TB, Hofreiter M, Bunce M, Poinar HN, Dahl-Jensen D, Johnsen S, Steffensen JP, Bennike O, Funder S, Schwenninger J-L, Nathan R, Armitage S, Barker J, Sharp M, Penkman KEH, Haile J, Taberlet P, Gilbert MTP, Casoli A, Campani E, Collins MJ (2007) Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317:111

    Article  PubMed  CAS  Google Scholar 

  • Woodward SR, Weyand NJ, Bunell M (1994) DNA sequence from Cretaceous period bone fragments. Science 266:1229–1232

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin B. Hebsgaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hebsgaard, M.B., Willerslev, E. (2009). Very Old DNA. In: Margesin, R. (eds) Permafrost Soils. Soil Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69371-0_4

Download citation

Publish with us

Policies and ethics