Skip to main content

Terrestrial Permafrost Models and Analogues of Martian Habitats and Inhabitants

  • Chapter
Permafrost Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 16))

Terrestrial permafrost, inhabited by viable microorganisms, represents a range of possible extraterrestrial cryogenic ecosystems on Earth-like planets without obvious surface ice, such as Mars. Due to its specific astronomical location in the Solar System, Mars is the only solid planet that, similar to Earth, contains abundant water supplies, which form the hydrosphere and cryosphere. Different relief forms originating probably from liquid water activity were observed on the Martian surface indicating the presence of dense atmosphere and liquid water in the past. Recent neutron and gamma-ray data from Mars Odyssey displayed two large provinces of high water content in polar regions where water mostly exists in the form of ice due to subzero temperatures. This fact indicates the presence of permafrost on Mars. In balanced terrestrial permafrost environment cells survive significantly longer than in other habitats. If life existed during the early stages of Martian development, then, similar to Earth, remnants of primitive forms may be found within frozen material that protects them against unfavorable conditions. This chapter considers several analogues of Martian environment, among them (i) the suggested age of Antarctic permafrost as an analogue somewhat closer to that of Mars than Arctic permafrost; (ii) free water that can only exist on Mars at shallow depth in the form of cryopegs, formed when Mars became cold in areas of high salts concentrations; (iii) volcano-ice interactions in permafrost areas as a way to have liquid water on Mars due the ongoing subglacial volcanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramov A, Gilichinsky D (2008) Mountain permafrost on active volcanoes: Field data and statistical mapping, Kluchevskaya Volcano Group (Kamchatka). Earth Cryosphere XII–1:29–41 (in Russian)

    Google Scholar 

  • Abyzov S (1993) Microorganisms in the Antarctic ice. In: Friedman EI (ed) Antarctic microbiology. Willey, New York, pp 265–296

    Google Scholar 

  • Anderson D, Gatto L, Ugolini F (1972) An Antarctic analog of Martian permafrost terrain. Antarct J USA 7:114–116

    Google Scholar 

  • Arvidson R, Bartlett P, Bell J, Blaney D, Christensen P, Chu P, Crumpler L, Davis K, Ehlmann B, Fergason R, Golombek M, Gorevan S, Grant J, Greeley R, Guinness E, Haldemann A, Herkenhoff K, Johnson J, Landis G, Li R, Lindemann R, McSween H, Ming D, Myrick T, Richter L, Seelos F, Squyres S, Sullivan R, Wang A, Wilson J (2004) Localization and physical properties experiments conducted by spirit at Gusev Crater. Science 305:821–824

    Article  PubMed  CAS  Google Scholar 

  • Baker V (2004) A brief geological history of water on Mars. In: Seckbach J (ed) Origin, genesis, evolution and diversity of life. Kluwer, Dordrecht, The Netherlands, pp 619–631

    Google Scholar 

  • Baker V, Strom R, Gulick V, Kargel J, Komatsu G, Kale V (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352:589–594

    Article  Google Scholar 

  • Baker L, Franchi I, Wright P (2005) The origins of Martian water: What we can learn from meteorites. In: Tokano T (ed) Water on Mars and life. Springer, Berlin, pp 3–24

    Google Scholar 

  • Bakermans C, Tsapin A, Souza-Egipsy V, Gilichinsky D, Nealson K (2003) Reproduction and metabolism at -10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326

    Article  PubMed  Google Scholar 

  • Bakermans C, Ayala-del-Río H, Ponder M, Vishnivetskaya T, Gilichinsky D, Thomashow M, Tiedje J (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Barrett P (1996) Antarctic paleoenvironment through Cenozoic times — a review. Terra Antarc 3:103–119

    Google Scholar 

  • Bidle K, Lee S, Marchant D, Falkowski P (2007) Fossil genes and microbes in the oldest ice on Earth. PNAS 104:13455–13460

    Article  PubMed  CAS  Google Scholar 

  • Bockheim J, Campbell I, McLeodd M (2007) Permafrost distribution and active-layer depths in the McMurdo Dry Valleys. Antarctica. Permafrost Periglac Process 18:217–227

    Article  Google Scholar 

  • Boynton W, Feldman W, Squyres S, Prettyman T, Bruckner J, Evans L, Reedy R, Starr R, Arnold J, Drake D, Englert P, Metzger A, Mitrofanov I, Trombka J, d’Uston C, WaËnke H, Gasnault O, Hamara D, Janes D, Marcialis R, Maurice S, Mikheeva I, Taylor G, Tokar R, Shinoharal C (2002) Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297:81–85

    Article  PubMed  CAS  Google Scholar 

  • Braitseva O, Melekestsev I, Ponomareva V, Sulerzhitsky L (1995) Ages of calderas, large explosives craters and active volcanoes in the Kuril-Kamchatka region, Russia. Bull Volcanol 57:383–402

    Google Scholar 

  • Cameron R, Morelli F (1974) Viable microorganisms from ancient Ross Island and Taylor Valley drill core. Antarct J USA 9:113–116

    Google Scholar 

  • Campbell I, Claridge G (1987) Antarctica: Soils, weathering processes and environment. Elsevier, Amsterdam, 368 pp

    Google Scholar 

  • Carpenter E, Lin S, Capone D (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517

    Article  PubMed  CAS  Google Scholar 

  • Carr M (1979) Formation of Martian flood features by release of water from confined aquifers. J Geophys Res 84:2995–3007

    Article  Google Scholar 

  • Carr M (1996) Water on Mars. Oxford University Press, New York

    Google Scholar 

  • Carr M (2000) Martian oceans, valleys and climate. Astron Geophys 41:20–26

    Article  Google Scholar 

  • Clifford SF (1993) A model for the hydrologic and climatic behavior of water on Mars. J Geophys Res 98:10973–11016

    Article  CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577

    Article  PubMed  CAS  Google Scholar 

  • Christner B, Mosley-Thompson E, Thompson L, Reeve J (2003) Bacterial recovery from ancient glacial ice. Environ Microbiol 5:433–436

    Article  PubMed  CAS  Google Scholar 

  • DeConto R, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249

    Article  PubMed  CAS  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  PubMed  CAS  Google Scholar 

  • Dickinson W, Rosen M (2003) Antarctic permafrost: An analogue for water and diagenetic minerals on Mars. Geology 31:199–202

    Article  CAS  Google Scholar 

  • Dombrowski H (1963) Bacteria from Paleozoic salt deposits. Ann NY Acad Sci 108:453–460

    Article  PubMed  CAS  Google Scholar 

  • Etzelmüller B, Farbrot H., Gudmundson б, Humlum O, Tveito O, Bjцrnsson H (2007) The regional distribution of mountain permafrost in Iceland. Permafrost Periglac Process 18:185–199

    Article  Google Scholar 

  • Fedotov S, Markhinim Y (1983) The Great Tolbachik Fissure Eruption: Geological and geophysical data 1975–1976. Cambridge University Press, England

    Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  PubMed  Google Scholar 

  • Gilichinsky D (2002) Permafrost as a microbial habitat. In: Britton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 932–956

    Google Scholar 

  • Gilichinsky DA, Soina VS, Petrova MA (1993) Cryoprotective properties of water in the Earth cryolithosphere and its role in exobiology. Origin Life Evol Biosphere 23:65–75

    Article  CAS  Google Scholar 

  • Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichus K, Tiedje J (2003) Supercooled water brines within permafrost — an unknown ecological niche for microorganisms: A model for astrobiology. Astrobiology 3:331–341

    Article  PubMed  CAS  Google Scholar 

  • Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje J (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117—128

    Article  PubMed  CAS  Google Scholar 

  • Gilichinsky DA, Wilson GS, Friedmann EI, Mckay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton JP, Ostroumov VE, Tiedje JM (2007a) Microbial populations in Antarctic permafrost: Biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311

    Article  PubMed  CAS  Google Scholar 

  • Gilichinsky D, Vishnivetskaya T, Petrova M, Spirina E, Mamykin V, Rivkina E (2007b) Bacteria in permafrost. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 83–102

    Google Scholar 

  • Horowitz N, Hubbard J, Cameron R (1972) Microbiology of Dry Valleys of Antarctica. Science 176:242–245

    Article  PubMed  Google Scholar 

  • Hvidberg C (2005) Polar Caps. In: Tokano T (ed) Water on Mars and life. Springer, Berlin, pp 129–152

    Google Scholar 

  • Jakosky B, Nealson K, Bakermans C, Ley R, Mellon M (2003) Subfreezing activity of microorganisms and the potential habitability of Mars polar regions. Astrobiology 3:343–350

    Article  PubMed  CAS  Google Scholar 

  • Junge K, Eicken H, Deming J (2004) Bacterial activity at −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    Article  PubMed  CAS  Google Scholar 

  • Kapitsa A, Ridley J, Robin G, Siegelt M, Zotikov I (1996) A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381:684–686

    Article  CAS  Google Scholar 

  • Karl D, Bird D, Bjorkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2146

    Article  PubMed  CAS  Google Scholar 

  • Kasting J (2003) The origins of water on Earth. In: Rennie J (ed) New light on the Solar System. Scientific American. Special Edition, New York, pp 28–33

    Google Scholar 

  • Keller J, Boynton W, Karunatillake S, Baker V, Dohm J, Evans L, Finch M, Hahn B, Hamara D, Janes D, Kerry K, Newsom H, Reedy R, Sprague A, Squyres S, Starr R, Taylor G, Williams R (2006) Equatorial and mid-latitude distribution of chlorine measured by Mars Odyssey GRS. J Geophys Res 112:E03S08

    Article  CAS  Google Scholar 

  • Kellerer-Pirklbauer A (2007) A global perspective on active volcanoes and permafrost. Geophys Res Abstr 9:09205

    Google Scholar 

  • Kuzmin R (2005) Ground ice in the Martian regolith. In: Tokano T (ed) Water on Mars and life. Springer, Berlin, pp 99–128

    Google Scholar 

  • Malin MC, Edgett KS (2003) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–2335

    Article  Google Scholar 

  • Mancinelli R, Fahlen T, Landheim R, Klovstad M (2004) Brines and evaporates: Analogs for Martian life. Adv Space Res 33:1244–1246

    Article  CAS  Google Scholar 

  • Marchant D, Denton G, Swisher C, Potter N (1996) Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the Dry Valleys region of southern Victoria Land. GSA Bull 108:181–194

    Article  Google Scholar 

  • McKay C, Mellon M, Friedmann EI (1998) Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys. Antarct Sci 10:31–38

    Article  PubMed  CAS  Google Scholar 

  • Mellon M, Phillips R (2001) Recent gullies on Mars and the source of liquid water. J Geophys Res 106:23165–23179

    Article  CAS  Google Scholar 

  • Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818

    Article  PubMed  CAS  Google Scholar 

  • Miteva V, Sheridan P, Brenchley J (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213

    Article  PubMed  CAS  Google Scholar 

  • Mitrofanov I (2005) Global distribution of subsurface water measured by Mars Odyssey. In: Tokano T (ed) Water on Mars and life. Springer, Berlin, pp 99–128

    Google Scholar 

  • Mitrofanov I, Zuber M, Litvak M, Demigod N, Sanin A, Boynton W, Gilichinsky D, Hamara D, Kozyrev A, Saunders R, Smith D, Tretyakov V (2007) Water ice permafrost on Mars: The layering structure and surface distribution according to HEND/Odyssey & MOLA/MGS data. Geophys Res Lett 34:L18102

    Article  Google Scholar 

  • Ng F, Hallet B, Sletten R, Stone J (2005) Fast growing till over ancient ice in Beacon Valley, Antarctica. Geology 33:121–124

    Article  Google Scholar 

  • Palacios D, Zamorano JJ, Andrés N (2007) Permafrost distribution in tropical stratovolcanoes: Popocatépetl and Iztaccíhuatl volcanoes (Mexico). Geophys Res Abstr 9:05615

    Google Scholar 

  • Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated fromAlaskan soil and permafrost in solid media frozen down to -35°C. FEMS Microbiol Ecol 59:500–512

    Article  PubMed  CAS  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  CAS  Google Scholar 

  • Picardi G, Plaut J, Biccari D, Bombaci O, Calabrese D, Cartacci M, Cicchetti A, Clifford S, Edenhofer P, Farrell W, Federico C, Frigeri A, Gurnett D, Hagfors T, Heggy E, Herique A, Huff R, Ivanov A, Johnson W, Jordan R, Kirchner D, Kofman W, Leuschen C, Nielsen E, Orosei R, Pettinelli E, Phillips R, Plettemeier D, Safaeinili A, Seu R, Stofan E, Vannaroni G, Watters T, Zampolini E (2005) Radar soundings of the subsurface of Mars. Science 23:1925–1928

    Article  CAS  Google Scholar 

  • Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115

    Article  PubMed  CAS  Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: An oasis for life in a polar desert. Science 280:2095–2098

    Article  PubMed  CAS  Google Scholar 

  • Read P, Lewis S (2004) The Martian climate revisited: Atmosphere and environment of a desert planet. Springer Praxis, Chichester, UK

    Google Scholar 

  • Rieder R, Geliert R, Anderson R, Breckner J, Clark B, Dreibus G, Economou T, Klingelhuiifer G, Lugmair G, Ming D, Squyres S, d’Uston C, Wanke H, Yen A,. Zipfel J (2004) Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science 306:1746–1749

    Article  PubMed  CAS  Google Scholar 

  • Rivkina E, Friedmann EI, McKay C, Gilichinsky D (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  PubMed  CAS  Google Scholar 

  • Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Rivkina E, Laurinavichius K, Gilichinsky D (2005) Microbial life below freezing point within permafrost. In: Castello JD, Rodgers SO (eds) Life in ancient ice. Princeton University Press, Princeton, NJ, pp 106–118

    Google Scholar 

  • Rodrigues DF, Goris J, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov. Extremophiles 10:285–294

    Article  PubMed  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Sagan C, Toon O, Gierasch P (1973) Climatic change on Mars. Science 181:1045–1049

    Article  PubMed  Google Scholar 

  • Salamatin AN, Tsyganova EA, Lipenkov VYa, Petit JR (2004) Vostok (Antarctica) ice-core time scale from dating of different origins. Ann Glaciol 39:283–292

    Article  Google Scholar 

  • Schaefer J, Heinrich B, Denton G, Ivy-Ochs S, Marchant D, Schlueschter C, Wieler R (2000) The oldest ice on Earth in Beacon Valley, Antarctica: New evidence from surface exposure dating. Earth Planet Sci Lett 179:91–99

    Article  Google Scholar 

  • Schorghofer N, Aharonson O (2006) Subsurface ice on Mars with rough topography. J Geophys Res 111:E11007

    Article  CAS  Google Scholar 

  • Shcherbakova V, Rivkina E, Laurinavichuis K, Pecheritsina S, Gilichinsky D (2004) Physiological characteristics of bacteria isolated from water brines within permafrost. Int J Astrobiol 3:37–43

    Article  CAS  Google Scholar 

  • Shcherbakova V, Chuvilskaya N, Rivkina E, Pecheritsyna S, Lysenko A, Laurinavichius K, Suzina N, Osipov G, Gilichinsky D, Akimenko V (2005) Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: Description Clostridium algoriphilum sp. nov. Extremophiles 9:239–246

    Article  PubMed  CAS  Google Scholar 

  • Sher A (1974) Pleistocene mammals and stratigraphy of the Far Northeast USSR and North America. Int Geol Rev 16:7–10

    Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  PubMed  CAS  Google Scholar 

  • Smith D, Zuber M, Solomon S, Phillips R, Head J, Garvin J, Banerdt B, Muhleman D, Pettengill G, Neumann G, Lemoine F, Abshire J, Aharonson O, Brown D, Hauck S, Ivanov A, McGovern P, Zwally J, Duxbury T (1999) The global topography of Mars and implications for surface evolution. Science 284:1495–1503

    Article  PubMed  CAS  Google Scholar 

  • Squyres S, Arvidson R, Bell J, BruËckner J, Cabrol N, Calvin W, Carr M, Christensen P, Clark B, Crumpler L, Des Marais D, d’Uston C, Economou T, Farmer J, Farrand W, Folkner W, Golombek M, Gorevan S, Grant J, Greeley R, Grotzinger J, Haskin L, Herkenhoff K, Hviid S, Johnson J, Klingelhoëfer G, Knoll A, Landis G, Lemmon M, Li R, Madsen M, Malin M, McLennan S, McSween H, Ming D, Moersch J, Morris R, Parker T, Rice J, Richter L, Rieder R, Sims M, Smith M, Smith P, Soderblom L, Sullivan R, WaËnke H, Wdowiak T, Wolff M, Yen A (2006) The opportunity Rover’s Athena science investigation at Meridian Planum, Mars. Science 306:1698–1703

    Article  Google Scholar 

  • Stan-Lotter H, Radax C, Gruber C, Legat A, Pfaffenhuemer M, Wieland H, Leuko S, Weidler G, K##mle N, Kargl G (2002) Astrobiology with haloarchaea from Permo-Triassic rock salt. Int J Astrobiol 1:271–284

    Article  Google Scholar 

  • Steven B, Leveille R, Pollard W, Whyte L (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Article  PubMed  Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culturedependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523

    PubMed  CAS  Google Scholar 

  • Sugden DE, Marchant DR, Potter N, Souchez RA, Denton GH, Swisher CC, Tison JL (1995) Preservation of Miocene glacier ice in East Antarctica. Nature 376:412–414

    Article  CAS  Google Scholar 

  • Thompson L, Yao T, Davis E, Henderson K, Mosley-Tompson E, Lin P-N, Beer J, Synal H-A, Cole-Dai J, Boizan J (1997) Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science 276:1821–1825

    Article  CAS  Google Scholar 

  • Tokano T (2003). Precession-driven migration of water in the surficial layers of Mars. Int J Astrobiol 2:155–170

    Article  Google Scholar 

  • Tokano T (ed) (2005) Water on Mars and life. Springer, Berlin

    Google Scholar 

  • Vreeland R, Rosenzweig W, Powers D (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    Article  PubMed  CAS  Google Scholar 

  • Webb P-N, Harwood D (1991) Late Cenozoic glacial history of the Ross Embayment, Antarctica. Quat Sci Rev 10:215–223

    Article  Google Scholar 

  • Willerslev E, Hansen A, Christensen B, Steffensen J, Arstander P (1999) Diversity of Holocene life forms in fossil glacier ice. PNAS 96:8017–8021

    Article  PubMed  CAS  Google Scholar 

  • Wilson GS, Braddock P, Forman SL, Friedmann EI, Rivkina EM, Chanton JP, Gilichinsky DA, Fyodorov-Davydov DG, Ostroumov VE, Sorokovikov VA, Wizevich MC (1996) Coring for microbial records of Antarctic climate. Antarct J USA 31:83–86

    Google Scholar 

  • Wilson GS, Barron JA, Ashworth AC, Askin RA, Carter JA, Curren MG, Dalhuisen DH, Friedmann EI, Fyodorov-Davidov DG, Gilichinsky DA, Harper MA, Harwood DM, Hiemstra JF, Janecek TR, Licht KJ, Ostroumov VE, Powell RD, Rivkina EM, Rose SA, Stroeven AP, Stroeven P, van der Meer JJM, Wizevich MC (2002) The Mount Feather Diamicton of the Sirius Group: An accumulation of indicators of Neogene Antarctic glacial and climatic history. PALEO 182:117–131

    Google Scholar 

  • Woodcock A (1974) Permafrost and climatology of a Hawaii volcano crater. Arct Alp Res 6:49–62, http://www.nasa.gov/mission_pages/mars/images/pia09027.html

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas L, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Myr to present. Science 292:686–693

    Article  PubMed  CAS  Google Scholar 

  • Zent AP, Fanale FP (1986) Possible Mars brines: Equilibrium and kinetic considerations. J Geophys Res 91:439–445

    Article  Google Scholar 

  • Zhang G, Xiaojun Ma, Fujun Niu, Maoxing Dong, Huyuan Feng, Lizhe An, Guodong Cheng (2007) Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai–Tibet Plateau permafrost region. Extremophiles 11:415–424

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Gilichinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demidov, N.E., Gilichinsky, D.A. (2009). Terrestrial Permafrost Models and Analogues of Martian Habitats and Inhabitants. In: Margesin, R. (eds) Permafrost Soils. Soil Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69371-0_21

Download citation

Publish with us

Policies and ethics