Applications of Quantum Stochastic Processes in Quantum Optics

  • Lue Bouten
Part of the Lecture Notes in Mathematics book series (LNM, volume 1954)


These lecture notes provide an introduction to quantum filtering and its applications in quantum optics. We start with a brief introduction to quantum probability, focusing on the spectral theorem. Then we introduce the conditional expectation and quantum stochastic calculus. In the last part of the notes we discuss the filtering problem.


Conditional Expectation Selfadjoint Operator Quantum Probability Spectral Theorem Homodyne Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Accardi, A. Frigerio, and Y. Lu. The weak coupling limit as a quantum functional central limit. Commun. Math. Phys., 131:537–570, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Barchielli. Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics. Quantum Opt., 2:423–441, 1990.CrossRefMathSciNetGoogle Scholar
  3. 3.
    V. P. Belavkin. Nondemolition stochastic calculus in Fock space and nonlinear filtering and control in quantum systems. In R. Guelerak and W. Karwowski, editors, Proceedings XXIV Karpacz winter school, Stochastic methods in mathematics and physics, pages 310–324. World Scientific, Singapore, 1988.Google Scholar
  4. 4.
    V. P. Belavkin. Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal., 42:171–201, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    L. Bouten, J. Stockton, G. Sarma, and H. Mabuchi. Scattering of polarized laser light by an atomic gas in free space: a quantum stochastic differential equation approach. Phys. Rev. A, 75:052111, 2007.CrossRefGoogle Scholar
  6. 6.
    L. M. Bouten, M. I. Guţă, and H. Maassen. Stochastic Schrödinger equations. J. Phys. A, 37:3189–3209, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    L. M. Bouten and R. Van Handel. On the separation principle of quantum control, 2005. math-ph/0511021.Google Scholar
  8. 8.
    L. M. Bouten and R. Van Handel. Quantum filtering: a reference probability approach, 2005. math-ph/0508006.Google Scholar
  9. 9.
    L. M. Bouten, R. Van Handel, and M. James. An introduction to quantum filtering. SIAM J. Control Optim., 46:2199–2241, 2007.CrossRefMathSciNetGoogle Scholar
  10. 10.
    C. Cohen Tannoudji, J. Dupont Roc, and G. Grynberg. Photons and Atoms: Introduction to Quantum Electrodynamics. Wiley, 1989.Google Scholar
  11. 11.
    J. Derezinski and W. De Roeck. Extended weak coupling limit for Pauli-Fierz operators, 2006. math-ph/0610054.Google Scholar
  12. 12.
    T. Duncan. Evaluation of likelihood functions. Information and Control, (13):62–74, 1968.Google Scholar
  13. 13.
    F. Fagnola. On quantum stochastic differential equations with unbounded coefficients. Probab. Th. Rel. Fields, 86:501–516, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    J. Gough. Quantum flows as Markovian limit of emission, absorption and scattering interactions. Commun. Math. Phys., 254:489–512, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Holevo. Quantum stochastic calculus. J. Soviet Math., 56:2609–2624, 1991. Translation of Itogi Nauki i Tekhniki, ser. sovr. prob. mat. 36, 3–28, 1990.CrossRefGoogle Scholar
  16. 16.
    R. L. Hudson and K. R. Parthasarathy. Quantum Itô’s formula and stochastic evolutions. Commun. Math. Phys., 93:301–323, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    R. V. Kadison and J. R. Ringrose. Fundamentals of the Theory of Operator Algebras, volume I. Academic Press, San Diego, 1983.zbMATHGoogle Scholar
  18. 18.
    G. Lindblad. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 48:119–130, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Maassen. Quantum probability applied to the damped harmonic oscillator. In S. Attal and J. Lindsay, editors, Quantum Probability Communications, volume XII, pages 23–58. World Scientific, Singapore, 2003.Google Scholar
  20. 20.
    R. Mortensen. Optimal Control of Continuous-Time Stochastic Systems. PhD thesis, Univ. California, Berkeley, 1966.Google Scholar
  21. 21.
    K. R. Parthasarathy. An Introduction to Quantum Stochastic Calculus. Birkhäuser, Basel, 1992.zbMATHGoogle Scholar
  22. 22.
    D. Petz. An Invitation to the Algebra of Canonical Commutation Relations. Leuven University Press, Leuven, 1990.zbMATHGoogle Scholar
  23. 23.
    M. Reed and B. Simon. Functional Analysis, volume 1 of Methods of Modern Mathematical Physics. Elsevier, 1980.Google Scholar
  24. 24.
    I. Segal. Tensor algebras over Hilbert spaces. I. Trans. Am. Math. Soc., 81:106–134, 1956.zbMATHCrossRefGoogle Scholar
  25. 25.
    J. K. Stockton. Continuous quantum measurement of cold alkali-atom spins. PhD thesis, California Institute of Technology, 2006.Google Scholar
  26. 26.
    M. Takesaki. Conditional expectations in von Neumann algebras. J. Funct. Anal., 9:306–321, 1971.CrossRefMathSciNetGoogle Scholar
  27. 27.
    J. von Neumann. Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren. Math. Ann., 102:370–427, 1929.zbMATHCrossRefGoogle Scholar
  28. 28.
    D. Williams. Probability with Martingales. Cambridge University Press, Cambridge, 1991.zbMATHGoogle Scholar
  29. 29.
    M. Zakai. On the optimal filtering of diffusion processes. Z. Wahrsch. Verw. Geb., 11:230–243, 1969.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lue Bouten
    • 1
  1. 1.Caltech Physical Measurement and Control, MC 266-33PasadenaUSA

Personalised recommendations