Skip to main content

Immune/Inflammatory Aspects

  • Chapter
Vitiligo

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Gauthier Y, Cario-André M, Taieb A (2003) A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy? Pigment Cell Res 16:322–327

    Article  PubMed  Google Scholar 

  2. Jin Y, Mailloux CM, Gowan K et al (2007) NALP1 in viti-ligo-associated multiple autoimmune disease. N Engl J Med 356:1216–1225

    Article  PubMed  CAS  Google Scholar 

  3. Manga P, Sheyn D, Yang F et al (2006) A role for tyrosinase related-protein 1 in 4-tertbutylphenol-induced toxicity in melanocytes. Implications for vitiligo. Am J Pathol 169:1652–1662

    Article  PubMed  CAS  Google Scholar 

  4. Abbas AK, Lichtman AH (2005) Innate immunity. In: Abbas AK, Lichtman AH (eds) Cellular and molecular Immunology, 5th edn. Elsevier Italia, Milano

    Google Scholar 

  5. Abdel-Naser MB, Ludwig WD, Gollnick H et al (1992) Nonsegmantal vitiligo: decrease of the CD45RA+ T-cell subset and evidence for peripheral T-cell activation. Int J Dermatol 31:321–326

    Article  PubMed  CAS  Google Scholar 

  6. Abdel-Naser MB, Krüger-Krasagakes S, Krasagakis K et al (1994) Further evidence for involvement of both cell mediated and humoral immunity in generalized vitiligo. Pigment Cell Res 7:1–8

    Article  PubMed  CAS  Google Scholar 

  7. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 1:135–145

    Article  CAS  Google Scholar 

  8. Al Badri AMT, Todd PM, Garioch J et al (1993) An immuno-histological study of cutaneous lymphocytes in vitiligo. J Pathol 170:149–155

    Article  Google Scholar 

  9. Albanesi C, Scarponi C, Giustizieri ML et al (2005) Keratinocytes in skin inflammation. Curr Drug Targets Inflamm Allergy 4:329–334

    Article  PubMed  CAS  Google Scholar 

  10. Asghar SS, Pasch MC (1998) Complement as a promiscuous signal transduction device. Lab Invest 78:1203–1225

    PubMed  CAS  Google Scholar 

  11. Barton GM (2008) A calculated response: control of inflam-mation by the innate immune response system. J Clin Invest 118:413–420

    Article  PubMed  CAS  Google Scholar 

  12. Becker CE, O'Neill LA (2007) Inflammasomes in inflam-matory disorders: the role of TLRs and their interactions with NLRs. Semin Immunopathol 29:239–248

    Article  PubMed  CAS  Google Scholar 

  13. Beuret L, Flori E, Denoyelle C et al (2007) Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis. J Biol Chem 282:14140–14147

    Article  PubMed  CAS  Google Scholar 

  14. Bhawan J, Bhutani LK (1983) Keratinocyte damage in viti-ligo. J Cutan Pathol 10:207–212

    Article  PubMed  CAS  Google Scholar 

  15. Bondanza S, Maurelli R, Paterna P et al (2007) Keratinocyte cultures from involved skin in vitiligo patients show an impaired in vitro behaviour. Pigment Cell Res 20:288–300

    Article  PubMed  CAS  Google Scholar 

  16. Borregard N, Theilgaard-Mönch K, Cowland JB et al (2005) Neutrophils and keratinocytes in innate immunity-cooperative actions to provide antimicrobial defence at the right time and place. J Leukoc Biol 77:439–443

    Article  CAS  Google Scholar 

  17. Braff MH, Bardan A, Nizet V et al (2005) Cutaneous defence mechanisms by antimicrobial peptides. J Invest Dermatol 125:9–13

    Article  PubMed  CAS  Google Scholar 

  18. Candille SI, Kaelin CB, Cattanach BM et al (2007) A beta-defensin mutation causes black coat colour in domestic dogs. Science 318:1418–1423

    Article  PubMed  CAS  Google Scholar 

  19. Cao W, Liu YJ (2007) Innate immune functions of plasmo-cytoid dendritic cells. Curr Opin Immunol 19:24–30

    Article  PubMed  CAS  Google Scholar 

  20. Chang HY, Chi JT, Dudoit S et al (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99:12877–12882

    Article  PubMed  CAS  Google Scholar 

  21. Chang HY (2007) Patterning skin pigmentation via dickkopf. J Invest Dermatol 127:994–995

    Article  PubMed  CAS  Google Scholar 

  22. Christy AL, Brown MA (2007) The Multitasking Mast Cell: positive and negative roles in the rogression of autoimmu-nity. J Immunol 179:2673–2679

    PubMed  CAS  Google Scholar 

  23. Clark R, Kupper T (2005) Old meets the new: the interaction between innate and adaptive immunity. J Invest Dermatol 125:629–637

    Article  PubMed  CAS  Google Scholar 

  24. Cole DS, Morgan BP (2003) Beyond the lysis: how complement influences cell fate. Clin Sci 104:455–466

    Article  PubMed  CAS  Google Scholar 

  25. Cookson BT, Brennan MA (2001) Proinflammatory programmed cell death. Trends Microbiol 9:113–114

    Article  PubMed  CAS  Google Scholar 

  26. Creagh EM, O'Neill LAJ (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357

    Article  PubMed  CAS  Google Scholar 

  27. Dawicki W, Marshall JS (2007) New and emerging roles for mast cells in host defence. Curr Opin Immunol 19:31–38

    Article  PubMed  CAS  Google Scholar 

  28. Faustin B, Lartigue L, Bruey JM et al (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of cas-pase-1 activation. Mol Cell 25:713–724

    Article  PubMed  CAS  Google Scholar 

  29. Fraser IP, Koziel H, Ezekowitz RAB (1998) The serum man-nose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin Immunol 10:363–372

    Article  PubMed  CAS  Google Scholar 

  30. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142

    Article  PubMed  CAS  Google Scholar 

  31. Goodnow CC (2006) Immunology: discriminating microbe from self suffers a double toll. Science 312:1606–1608

    Article  PubMed  Google Scholar 

  32. Grando SA, Pittelow MR, Schallreuter KU (2006) Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J Invest Dermatol 126:1948–1965

    Article  PubMed  CAS  Google Scholar 

  33. Grimes PE, Sevall JS, Vodjani A (1996) Cytomegalovirus DNA identified in skin biopsy specimens of patients with vitiligo. J Am Acad Dermatol 35:21–26

    Article  PubMed  CAS  Google Scholar 

  34. Hann SK, Park YK, Chung KY et al (1993) Peripheral blood lymphocyte imbalance in Koreans with active vitiligo. Int J Dermatol 32:286–289

    Article  PubMed  CAS  Google Scholar 

  35. Hann SK, Kim YS, Yoo JH et al (2000) Clinical and histo-pathologic characteristics of trichrome vitiligo. J Am Acad Dermatol 42:589–596

    PubMed  CAS  Google Scholar 

  36. Imokawa G (2004) Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res 17:96–110

    Article  PubMed  CAS  Google Scholar 

  37. Inohara N, Chamaillard M, Mc Donald C et al (2005) NOD-LRR proteins: role in host-microbial interactions and inflam-matory diseases. Ann Rev Biochem 74:355–383

    Article  PubMed  CAS  Google Scholar 

  38. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  39. Jin Y, Mailloux CM, Gowan K et al (2007) NALP1 in viti-ligo-associated multiple autoimmune disease. N Engl J Med 356:1216–1225

    Article  PubMed  CAS  Google Scholar 

  40. Jin Y, Birlea SA, Fain PR et al (2007) Genetic variations in NALP1 are associated with generalized vitiligo in a romanian population. J Invest Dermatol 127:2558–2562

    Article  PubMed  CAS  Google Scholar 

  41. Kabelitz D, Medzhitov R (2007) Innate immunity — cross talk with adaptive immunity through pattern recognition receptors and cytochines. Curr Opin Immunol 19:1–3

    Article  PubMed  CAS  Google Scholar 

  42. Kim HJ, Choi CP, Uhm YK et al (2007) The association between endothelin-1 gene polymorphisms and susceptibility to vitiligo in a Korean population. Exp Dermatol 16:561–566

    Article  PubMed  CAS  Google Scholar 

  43. Kim NH, Jeon S, Lee HJ et al (2007) Impaired PI3K/Akt activation-mediated NF-kB inactivation under elevated TNF-alpha is more vulnerable to apoptosis in vitiliginous keratinocytes. J Invest Dermatol 127:2612–2617

    Article  PubMed  CAS  Google Scholar 

  44. Korsunskaya IM, Suvorova KN, Dvoryankova EV (2003) Modern aspects of vitiligo pathogenesis. Dokl Biol Sci 388:38–40

    Article  PubMed  CAS  Google Scholar 

  45. Kroll TM, Bommiasamy H, Boissy RE et al (2005) 4-Tertiary butyl phenol exposure sensitises human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol 124:798–806

    Article  PubMed  CAS  Google Scholar 

  46. Kummer JA, Broekhuizen R, Everett H et al (2007) Inflammasome components NALP1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem 55:443–452

    Article  PubMed  CAS  Google Scholar 

  47. Kwai T, Akira S (2007) Antiviral signaling through pattern recognition receptors. J Biochem 141:137–145

    Article  CAS  Google Scholar 

  48. Lande R, Gregorio J, Facchinetti V et al (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564–569

    Article  PubMed  CAS  Google Scholar 

  49. Lee AY, Youm YH, Kim NH et al (2004) Keratinocytes in the depigmented epidermis of vitiligo are more vulnerable to trauma (suction) than keratinocytes in the normally pig-mented epidermis, resulting in their apoptosis. Br J Dermatol 151:995–1003

    Article  PubMed  Google Scholar 

  50. Lee AY, Kim NH, Choi WI et al (2005) Less keratinocyte-derived factors related to more keratinocyte apoaptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo. J Invest Dermatol 124:976–983

    Article  PubMed  CAS  Google Scholar 

  51. Le Poole IC, van den Wijngaard RM, Westerhoff W et al (1996) Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol 148:1219–1228

    PubMed  Google Scholar 

  52. Lu G, Janjic BM, Janjic J et al (2002) Innate direct anticancer effector function of human immature dendritic cells. II. Role of TNF, lymphotoxin-alpha(1)beta(2), Fas ligand, and TNF-related apoptosis-inducing ligand. J Immunol 15:1831–1839

    Google Scholar 

  53. Lu LF, Lind EF, Gondek DC et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:987–988

    Article  CAS  Google Scholar 

  54. Mahmoud F, Abul H, Haines D et al (2002) Decreased total numbers of peripheral blood lymphocytes with elevated percentages of CD4+CD45RO+ and CD4+CD25+ of T-helper cells in non-segmantal vitiligo. J Dermatol 29:68–73

    PubMed  Google Scholar 

  55. Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflam-mation. Nat Rev Immunol 7:31–40

    Article  PubMed  CAS  Google Scholar 

  56. Mc InturffJE, Modlin RL, Kim J (2005) The role of toll-like receptors in the pathogenesis and treatment of dermatologi-cal disease. J Invest Dermatol 125:1–8

    Article  Google Scholar 

  57. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826

    Article  PubMed  CAS  Google Scholar 

  58. Nath SK, Kelly JA, Namjou B et al (2001) Evidence for a susceptibility gene, SLEV1, on chromosome 17p13 in families with vitiligo-related systemic lupus erythematosus. Am J Hum Genet 69:1401–1406

    Article  PubMed  CAS  Google Scholar 

  59. Nestle FO, Nickoloff BJ (2007) Deepening our understanding of immune sentinels in the skin. J Clin Invest 117:2382–2385

    Article  PubMed  CAS  Google Scholar 

  60. Nickoloff BJ, Wrone-Smith T, Bonish B et al (1999) Response of murine and normal human skin to injection of allogenic blood-derived psoriatic immunocytes: detection of T cells expressing receptors typically present on natural killer cells including CD94, CD158 and CD161. Arch Dermatol 135:546–552

    Article  PubMed  CAS  Google Scholar 

  61. Nickoloff BJ, Denning M (2001) Sensing and killing bacteria by the skin: innate immune defense system: good and bad news. J Invest Dermatol 117:170

    PubMed  CAS  Google Scholar 

  62. Norris A, Todd C, Graham A et al (1996) The expression of the c-kit receptor by epidermal melanocytes may be rediced in vitiligo. Br J Dermatol 134:299–306

    Article  PubMed  CAS  Google Scholar 

  63. Onay H, Pehlivan M, Alper S et al (2007) Might there be a link between mannose binding lectin and vitiligo? Eur J Dermatol 17:146–148

    PubMed  CAS  Google Scholar 

  64. Panucio AL, Vignale R (2003) Ultrastructural studies in stable vitiligo. Am J Dermatopathol 25:16–20

    Article  Google Scholar 

  65. Pastore S, Mascia F, Mariani V et al (2007) The epidermal growth factor receptor system in skin repair and inflamma-tion. J Invest Dermatol 127:660–667

    Article  PubMed  CAS  Google Scholar 

  66. Petersen S V, Thiel S, Jensenius JC (2001) The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol 38:133–149

    Article  PubMed  CAS  Google Scholar 

  67. Sandgren S, Witturp A, Chenf F et al (2004) The human antimicrobial peptide LL-37 transfers extracellular DNA plas-mid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J Biol Chem 279:17951–17956

    Article  PubMed  CAS  Google Scholar 

  68. Sayed BA, Christy A, Qirion MR et al (2008) The master switch: the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol 26:705–739

    Article  PubMed  CAS  Google Scholar 

  69. Schallreuter KU, Pittelkow MP (1988) Defective calcium uptake in keratinocytes cell cultures from vitiliginous skin. Arch Derm Res 280:137–139

    Article  PubMed  CAS  Google Scholar 

  70. Schallreuter KU, Bahadoran P, Picardo M et al (2008) Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcuim imbalance, or what else. Exp Dermatol 17:139–160

    PubMed  CAS  Google Scholar 

  71. Schröder JM, Harder J (2006) Antimicrobial skin peptides and proteins. Cell Mol Life Sci 63:469–486

    Article  PubMed  CAS  Google Scholar 

  72. Seth RB, Sun L, Chen ZJ (2006) Antiviral innate immunity pathways. Cell Res 16:141–147

    Article  PubMed  CAS  Google Scholar 

  73. Smith N, Le Poole I, van den Wijngaard R et al (1993) Expression of different immunological markers by cultured human melanocytes. Arch Dermatol Res 285:356–365

    Article  Google Scholar 

  74. Strober W, Murray PJ, Kitani A et al (2006) Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6:9–20

    Article  PubMed  CAS  Google Scholar 

  75. Trcka J, Moroi Y, Clynes RA et al (2002) Redundant and alternative roles for activating Fc receptors and complement in an antibody-dependent model of autoimmune vitiligo. Immunity 16:861–868

    Article  PubMed  CAS  Google Scholar 

  76. Uheara M, Miyauchi H, Tanaka S (1984) Diminished contact sensitivity response in vitiliginous skin. Arch Dermatol 120:195–198

    Article  Google Scholar 

  77. van den Wijngaard R, Asghar SS, Pijnenborg A et al (2002) Aberrant expression of complement regulatory proteins, membrane cofactor protein and decay accelerating factor, in the involved epidermis of patients with vitiligo. Br J Dermatol 146:80–87

    Article  PubMed  Google Scholar 

  78. Venneker GT, Westerhof W, de Vries IJ et al (1992) Molecular heterogeneity of the fourth component of complement (C4) and its genes in vitiligo. J Invest Dermatol 99:853–858

    Article  PubMed  CAS  Google Scholar 

  79. Venneker GT, Vodegel RM, Okada N et al (1998) Relative contributions of decay accelerating factor (DAF), membrane cofactor protein (MCP) and CD59 in the protection of mel-anocytes from homologous complement. Immunobiology 198:476–484

    Article  PubMed  CAS  Google Scholar 

  80. Walport MJ (2001) Complement. N Engl J Med 344:1058– 1066; 1141–1144

    Article  PubMed  CAS  Google Scholar 

  81. Yamaguchi Y, Itami S, Watabe H et al (2004) Mesenchymal-epithelial interactions in the skin: increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation. J Cell Biol 26:275–285

    Article  CAS  Google Scholar 

  82. Yu HS, Kao CH, Yu CL (1993) Coexistence and relationship of antikeratinocyte and antimelanocyte antibodies in patients with non-segmental-type vitiligo. J Invest Dermatol 100:823–828

    Article  PubMed  CAS  Google Scholar 

  83. Yu HS, Chang KL, Yu CL et al (1997) Alterations in IL-6, IL-8, GM-CSF, TNF-alpha, and IFN-gamma release by peripheral mononuclear cells in patients with active vitiligo. J Invest Dermatol 108:527–529

    Article  PubMed  CAS  Google Scholar 

  84. Zheng Y, Niyonsaba F, Ushio H et al (2007) Cathelicidin LL-37 indices the generation of reactive oxygen species and release of human a-defensins from neutrophils. Br J Dermatol 157:1124–1131

    Article  PubMed  CAS  Google Scholar 

  85. Abdel Naser MB, Kruger-Krasagakes S, Krasagakis K et al (1994) Further evidence for involvement of both cell mediated and humoral immunity in generalised vitiligo. Pigment Cell Res 7:1–8

    Article  PubMed  CAS  Google Scholar 

  86. Aronson PJ, Hashimoto K (1987) Association of IgA anti-melanoma antibodies in the sera of vitiligo patients with active disease. J Invest Dermatol 88:475

    Google Scholar 

  87. Austin LM, Boissy RE (1995) Mammalian tyrosinase-related protein-1 is recognised by autoantibodies from vit-iliginous Smyth chickens. Am J Pathol 146:1529–1541

    PubMed  CAS  Google Scholar 

  88. Baharav E, Merimski O, Shoenfeld Y et al (1996) Tyrosinase as an autoantigen in patients with vitiligo. Clin Exp Immunol 105:84–88

    Article  PubMed  CAS  Google Scholar 

  89. Betterle C, Del Prete GF, Peserico A et al (1976) Autoantibodies in vitiligo. Arch Dermatol 112:1328

    Article  PubMed  CAS  Google Scholar 

  90. Bowne WB, Srinivasan R, Wolchok JD et al (1999) Coupling and uncoupling of tumor immunity and autoimmunity. J Exp Med 190:1717–1722

    Article  PubMed  CAS  Google Scholar 

  91. Brostoff J, Bor S, Feiwel M (1969) Autoantibodies in patients with vitiligo. Lancet 2:177–178

    Article  PubMed  CAS  Google Scholar 

  92. Bystryn J-C (1987) Immune mechanisms in vitiligo. Clin Dermatol 15:853–861

    Article  Google Scholar 

  93. Bystryn J-C, Rigel D, Friedman RJ et al (1987) The prognostic significance of vitiligo in patients with melanoma. Arch Dermatol 123:1053–1055

    Article  PubMed  CAS  Google Scholar 

  94. Cario-Andre M, Pain C, Gauthier Y et al (2007) The melano-cytorrhagic hypothesis of vitiligo tested on pigmented, stressed, reconstructed epidermis. Pigment Cell Res 20:385–393

    PubMed  CAS  Google Scholar 

  95. Cooke A, Fehervari Z (2007) Central and peripheral tolerance. In: Wiersinga WM, Drexhage HA, Weetman AP, Butz S (eds) The thyroid and autoimmunity. Georg Thieme, Stuttgart, pp 1–11

    Google Scholar 

  96. Cui J, Bystryn J-C (1995) Melanoma and vitiligo are associated with antibody responses to similar antigens on pigment cells. Arch Dermatol 131:314–318

    Article  PubMed  CAS  Google Scholar 

  97. Cui J, Harning R, Henn M, Bystryn J-C (1992) Identification of pigment cell antigens defined by vitiligo antibodies. J Invest Dermatol 98:162–165

    Article  PubMed  CAS  Google Scholar 

  98. Cui J, Arita, Y, Bystryn JC (1993) Cytolytic antibodies to melanocytes in vitiligo. J Invest Dermatol 100:812–815

    Article  PubMed  CAS  Google Scholar 

  99. Cui J, Arita Y, Bystryn J-C (1995) Characterisation of viti-ligo antigens. Pigment Cell Res 8:53–59

    Article  PubMed  CAS  Google Scholar 

  100. Dell'Anna ML, Picardo M (2006) A review and a new hypothesis for non-immunological pathogenetic mechanisms in vitiligo. Pigment Cell Res 19:406–411

    Article  PubMed  Google Scholar 

  101. Farrokhi S, Farsangi-Hojjat M, Noohpisheh MK et al (2005) Assessment of the immune system in 55 Iranian patients with vitiligo. J Eur Acad Dermatol Venereol 19:706–711

    Article  PubMed  CAS  Google Scholar 

  102. Fishman P, Azizi E, Shoenfeld Y et al (1993) Vitiligo autoantibodies are effective against melanoma. Cancer 72:2365–2369

    Article  PubMed  CAS  Google Scholar 

  103. Gilhar A, Zelickson B, Ulman Y et al (1995) In vivo destruction of melanocytes by the IgG fraction of serum from patients with vitiligo. J Invest Dermatol 105:683–686

    Article  PubMed  CAS  Google Scholar 

  104. Gottumukkala RVSRK, Waterman EA, Herd LM et al (2003) Autoantibodies in vitiligo patients recognise multiple domains of the melanin-concentrating hormone receptor. J Invest Dermatol 121:765–770

    Article  PubMed  CAS  Google Scholar 

  105. Gottumukkala RVSRK, Gavalas NG, Akhtar S et al (2006) Function blocking autoantibodies to the melanin-concentrating hormone receptor in vitiligo patients. Lab Invest 86:781–789

    PubMed  CAS  Google Scholar 

  106. Hann SK, Kim HI, Im S et al (1993) The change of melano-cyte cytotoxicity after systemic steroid treatment in vitiligo patients. J Dermatol Sci 6:201–205

    Article  PubMed  CAS  Google Scholar 

  107. Hann SK, Park YK, Chung KY et al (1993) Peripheral lymphocyte imbalance in Koreans with active vitiligo. Int J Dermatol 32:286–289

    Article  PubMed  CAS  Google Scholar 

  108. Hann SK, Koo SW, Kim JB et al (1996) Detection of antibodies to human melanoma cells in vitiligo and alopecia areata by Western blot analysis. J Dermatol 23:100–103

    PubMed  CAS  Google Scholar 

  109. Hann SK, Shin HK, Park SH et al (1996) Detection of antibodies to melanocytes in vitiligo by western blotting. Yonsei Med J 37:365–370

    PubMed  CAS  Google Scholar 

  110. Harning R, Cui J, Bystryn J-C (1991) Relation between the incidence and level of pigment cell antibodies and disease activity in vitiligo. J Invest Dermatol 97:1078–1080

    Article  PubMed  CAS  Google Scholar 

  111. Hedstrand H, Ekwall O, Olsson MJ et al (2001) The transcription factors SOX9 and SOX10 are melanocyte autoantigens related to vitiligo in autoimmune polyendocrine syndrome type 1. J Biol Chem 276:35390–35395

    Article  PubMed  CAS  Google Scholar 

  112. Hoogduijn MJ, Ancans J, Suzuki I et al (2002) Melanin-concentrating hormone and its receptor are expressed and functional in human skin. Biochem Biophys Res Commun 296:698–701

    Article  PubMed  CAS  Google Scholar 

  113. Huang SKS, Okamoto T, Morton DL et al (1998) Antibody responses to melanoma/melanocyte autoantigens in melanoma patients. J Invest Dermatol 111:662–667

    Article  PubMed  CAS  Google Scholar 

  114. Jadali Z, Eslami B, Sanati MH et al (2005) Identification of peptides specific for antibodies in vitiligo using a phage library. Clin Exp Dermatol 30:694–701

    Article  PubMed  CAS  Google Scholar 

  115. Kemp EH, Gawkrodger DJ, MacNeil S et al (1997) Detection of tyrosinase autoantibodies in vitiligo patients using 35S-labelled recombinant human tyrosinase in a radioimmu-noassay. J Invest Dermatol 109:69–73

    Article  PubMed  CAS  Google Scholar 

  116. Kemp EH, Gawkrodger DJ, Watson PF et al (1997) Immunoprecipitation of melanogenic enzyme autoantigens with vitiligo sera: evidence for cross-reactive autoantibodies to tyrosinase and tyrosinase-related protein-2 (TRP-2). Clin Exp Immunol 109:495–500

    Article  PubMed  CAS  Google Scholar 

  117. Kemp EH, Gawkrodger DJ, Watson PF et al (1998) Autoantibodies to human melanocyte-specific protein Pmel17 in the sera of vitiligo patients: a sensitive and quantitative radioimmunoassay (RIA). Clin Exp Immunol 114:333–338

    Article  PubMed  CAS  Google Scholar 

  118. Kemp EH, Waterman EA, Gawkrodger DJ et al (1998) Autoantibodies to tyrosinase-related protein-1 detected in the sera of vitiligo patients using a quantitative radiobinding assay. Br J Dermatol 139:798–805

    Article  PubMed  CAS  Google Scholar 

  119. Kemp EH, Waterman EA, Gawkrodger DJ et al (1999) Identification of epitopes on tyrosinase which are recognised by autoantibodies from patients with vitiligo. J Invest Dermatol 113:267–271

    Article  PubMed  CAS  Google Scholar 

  120. Kemp EH, Waterman EA, Gawkrodger DJ et al (2001) Molecular mapping of epitopes on melanocyte-specific protein Pmel17 which are recognised by autoantibodies in patients with vitiligo. Clin Exp Immunol 124:509–515

    Article  PubMed  CAS  Google Scholar 

  121. Kemp EH, Waterman EA, Hawes BE et al (2002) The melanin-concentrating hormone receptor 1, a novel target of autoantibody responses in vitiligo. J Clin Invest 109:923–930

    PubMed  CAS  Google Scholar 

  122. Kroll TM, Bommiasamy H, Boissy RE et al (2005) 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol 124:798–806

    Article  PubMed  CAS  Google Scholar 

  123. Lang KS, Caroli CC, Muhm D et al (2001) HLA-A2 restricted, melanocyte-specific CD8+ T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MelanA/MART1. J Invest Dermatol 116:891–897

    Article  PubMed  CAS  Google Scholar 

  124. Mandry RC, Ortiz LJ, Lugo-Somolinos A et al (1996) Organ-specific autoantibodies in vitiligo patients and their relatives. Int J Dermatol 35:18–21

    Article  PubMed  CAS  Google Scholar 

  125. Merimsky O, Shoenfeld Y, Yecheskel G et al (1994) Vitiligo-and melanoma-associated hypopigmentation: a similar appearance but a different mechanism. Cancer Immunol Immunother 38:411–416

    Article  PubMed  CAS  Google Scholar 

  126. Merimsky O, Baharav E, Shoenfeld Y et al (1996) Anti-tyrosinase antibodies in malignant melanoma. Cancer Immunol Immunother 42:297–302

    Article  PubMed  CAS  Google Scholar 

  127. Merimsky O, Shoenfeld Y, Baharav E et al (1996) Melanoma-associated hypopigmentation: where are the antibodies? Am J Clin Oncol 19:613–618

    Article  PubMed  CAS  Google Scholar 

  128. Morgenthaler NG, Hodak K, Seissler J et al (1999) Direct binding of thyrotropin receptor autoantibody to in vitro translated thyrotropin receptor: a comparison to radioreceptor assay and thyroid stimulating bioassay. Thyroid 9:467–475

    Article  Google Scholar 

  129. Nagamine K, Peterson P, Scott HS et al (1997) Positional cloning of the APECED gene. Nat Genet 17:393–398

    Article  PubMed  CAS  Google Scholar 

  130. Naughton GK, Eisinger M, Bystryn J-C (1983) Antibodies to normal human melanocytes in vitiligo. J Exp Med 158:246–251

    Article  PubMed  CAS  Google Scholar 

  131. Naughton GK, Eisenger M, Bystryn J-C (1983) Detection of antibodies to melanocytes in vitiligo by specific immunopre-cipitation. J Invest Dermatol 81:540–542

    Article  PubMed  CAS  Google Scholar 

  132. Naughton GK, Reggiardo MD, Bystryn J-C (1986) Correlation between vitiligo antibodies and extent of depig-mentation in vitiligo. J Am Acad Dermatol 15:978–981

    Article  PubMed  CAS  Google Scholar 

  133. Nordlund JJ, Kirkwood JM, Forget BM et al (1983) Vitiligo in patients with metastatic melanoma: a good prognostic sign. J Am Acad Dermatol 9:689–696

    Article  PubMed  CAS  Google Scholar 

  134. Norris DA, Capin L, Muglia, JJ et al (1988) Enhanced susceptibility of melanocytes to different immunologic effector mechanisms in vitro: potential mechanisms for post-inflam-matory hypopigmentation and vitiligo. Pigment Cell Res 1(Suppl):113–123

    Article  Google Scholar 

  135. Norris DA, Kissinger RM, Naughton GK et al (1988) Evidence for immunologic mechanisms in human vitiligo: patients' sera induce damage to human melanocyes in vitro by complement-mediated damage and antibody-dependent cellular cytotoxicity. J Invest Dermatol 90:783–789

    Article  PubMed  CAS  Google Scholar 

  136. Ogg GS, Dunbar PR, Romero P et al (1998) High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med 6:1203–1208

    Article  Google Scholar 

  137. Okamoto T, Irie RF, Fujii S et al (1998) Anti-tyrosinase-related protein-2 immune response in vitiligo and melanoma patients receiving active-specific immunotherapy. J Invest Dermatol 111:1034–1039

    Article  PubMed  CAS  Google Scholar 

  138. Overwijk WW, Lee DS, Surman DR et al (1999) Vaccination with recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ lymphocytes. Proc Natl Acad Sci USA 96:2982–2987

    Article  PubMed  CAS  Google Scholar 

  139. Oyarbide-Valencia K, van den Boorn JG, Denman CJ et al (2006) Therapeutic implications of autoimmune vitiligo cells. Autoimmunity Rev 5:486–492

    Article  Google Scholar 

  140. Palermo B, Campanelli R, Garbelli S et al (2001) Specific cytotoxic T lymphocyte responses against MelanA/MART1, tyrosinase and gp100 in vitiligo by the use of major histo-compatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo J Invest Dermatol 117:326–332

    Article  PubMed  CAS  Google Scholar 

  141. Park YK, Kim NS, Hann SK et al (1996) Identification of autoantibody to melanocytes and characterisation of vitiligo antigen in vitiligo patients. J Dermatol Sci 11:111–120

    Article  PubMed  CAS  Google Scholar 

  142. Rocha IM, Oliveira LJ, De Castro LC et al (2002) Recognition of melanoma cell antigens with antibodies present from patients with vitiligo. Int J Dermatol 39:840–843

    Article  Google Scholar 

  143. Secarz E, Rjaa-Gabaglia C (2007) Etiology of autoimmmune disease: how T cells escape self-tolerance. Methods Mol Biol 380:271–284

    Article  Google Scholar 

  144. Schallreuter KU, Chavan B, Rokos H et al (2005) Decreased phenylalanine uptake and turnover in patients with vitiligo. Mol Genet Metabol 86:S27–S33

    Article  CAS  Google Scholar 

  145. Song YH, Connor E, Li Y et al (1994) The role of tyrosinase in autoimmune vitiligo. Lancet 344:1049–1052

    Article  PubMed  CAS  Google Scholar 

  146. Taieb A (2000) Intrinsic and extrinsic pathomechanisms in vitiligo. Pigment Cell Res 13(Suppl 8):41–47

    Article  PubMed  Google Scholar 

  147. Takechi Y, Hara I, Naftzger C et al (1996) A melanosomal membrane protein is a cell surface target for melanoma therapy. Clin Cancer Res 2:1837–1842

    PubMed  CAS  Google Scholar 

  148. Uda H, Takei M, Mishima Y et al (1984) Immunopathology of vitiligo vulgaris, Sutton's leukoderma and melanoma-associated vitiligo in relation to steroid effects. II. The IgG and C3 deposits in the skin. J Cut Pathol 11:114–124

    Article  CAS  Google Scholar 

  149. Uz-Zaman T, Begum S, Waheed MA (1992) In vitro assessment of T lymphocyte functioning in vitiligo. Acta Derm Venereol 72:266–267

    Google Scholar 

  150. Waterman EA, Kemp EH, Gawkrodger DJ et al (2002) Autoantibodies in vitiligo patients are not directed to the melanocyte differentiation antigen MelanA/MART1. Clin Exp Immunol 129:527–523

    Article  PubMed  CAS  Google Scholar 

  151. Wojdani A, Grimes PE, Loeb LJ et al (1992) Detection of antibenzene ring antibodies in patients with vitiligo. J Invest Dermatol 98:644

    Google Scholar 

  152. Xie P, Geohegan WD, Jordan RE (1991) Vitiligo autoanti-bodies. Studies of subclass distribution and complement activation. J Invest Dermatol 96:627

    Google Scholar 

  153. Xie Z, Chen DL, Jiao D et al (1999) Vitiligo antibodies are not directed to tyrosinase. Arch Dermatol 135:417–422

    Article  PubMed  CAS  Google Scholar 

  154. Yi YL, Yu CH, Yu HS (2000) IgG anti-melanocyte antibodies purified from patients with active vitiligo induce HLA-DR and intercellular adhesion molecule-1 expression and an increase in interleukin-8 release by melanocytes. J Invest Dermatol 115:969–973

    Article  Google Scholar 

  155. Yu HS, Kao CH, Yu CL (1993) Coexistence and relationship of antikeratinocyte and antimelanocyte antibodies in patients with non-segmental-type vitiligo. J Invest Dermatol 100:823–828

    Article  PubMed  CAS  Google Scholar 

  156. Zauli D, Tosti A, Biasco G et al (1986) Prevalence of autoimmune atrophic gastritis in vitiligo. Digestion 34:169–172

    Article  PubMed  CAS  Google Scholar 

  157. Le Poole IC, van den Wijngaard RMJGJ, Westerhof W, Das PK (1996) Presence of T cells and macrophages in inflam-matory vitiligo parallels melanocyte disappearance. Am J Pathol 148:1219–1228

    PubMed  Google Scholar 

  158. Buckley WR, Lobitz WC Jr (1953) Vitiligo with a raised inflammatory border. AMA Arch Derm Syphilol 67:316–320

    Article  PubMed  CAS  Google Scholar 

  159. Garb J, Wise F (1948) Vitiligo with raised borders. Arch Dermatol Syph 58:149–153

    Article  CAS  Google Scholar 

  160. Ishii M, Hamada T (1981) Ultrastructural studies of vitiligo with inflammatory raised borders. J Dermatol 8:313–322

    PubMed  CAS  Google Scholar 

  161. Michaëlsson G (1968) Vitiligo with raised borders: report of two cases. Acta Dermatol Venereol 48:158–161

    Google Scholar 

  162. Wätzig V (1974) Vitiligo with inflammatory marginal dam. Dermatol Monatsschr 160:409–413

    PubMed  Google Scholar 

  163. Van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C et al (2000) Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes associated with the prominent presence of CLA + T cells at the perilesional site. Lab Invest 80:1299–1309

    Article  PubMed  Google Scholar 

  164. Hann SK, Park YK, Lee KG et al (1992) Epidermal changes in active vitiligo. J Dermatol 19:217–222

    PubMed  CAS  Google Scholar 

  165. Baumer FE, Frisch W, Milbradt R, Holzmann H et al (1990) Increased expression of the OKM5 antigen in blood mono-cytes in vitiligo. Z Hautkr 65:917–919

    Google Scholar 

  166. Cao T, Ueno H, Glaser C et al (2007) Both Langerhans cells and interstitial DC cross-present melanoma antigens and efficiently activate antigen-specific CTL. Eur J Immunol 37:2657–2667

    Article  PubMed  CAS  Google Scholar 

  167. Norris DA, Kissinger RM, Naughton GM, Bystryn JC (1988) Evidence for immunologic mechanisms in human vitiligo: patient's sera induce damage to human melanocytes in vitro by complement mediated damage and antibody-dependent cellular cytotoxicity. J Invest Dermatol 90:783–789

    Article  PubMed  CAS  Google Scholar 

  168. Kroll TM, Bommaiasamy H, Boissy RE et al (2005) 4-Tertiary butyl phenol exposure sensitizes human melano-cytes to dendritic cell mediated killing: relevance to vitiligo. J Invest Dermatol 124:798–806

    Article  PubMed  CAS  Google Scholar 

  169. Le Poole IC, Stennett LS, Bonish BK et al (2003) Expansion of vitiligo lesions is associated with reduced epidermal CDw60 expression and increased expression of HLA-DR in perilesional skin. Br J Dermatol 149:739–748

    Article  PubMed  Google Scholar 

  170. De Boer OJ, van der Loos CM, Hamerlinck F et al (1994) Reappraisal of in situ immunophenotypic analysis of psoriasis skin: interaction of activated HLA-DR + immunocompe-tent cells and endothelial cells is a major feature of psoriatic lesions. Arch Dermatol Res 286:87–96

    Article  CAS  Google Scholar 

  171. Arcos-Bugos M, Parodi E, Salgar M et al (2002) Vitiligo: complex segregation and linkage disequilibrium analyses with respect to microsatellite loci spanning the HLA. Hum Genet 110:334–342

    Article  CAS  Google Scholar 

  172. Taştan HB, Akar A, Orkuynoğlu FE et al (2004) Association of HLA class I antigens and HLA class II alleles with viti-ligo in a Turkish population. Pigment Cell Res 17:181–184

    Article  PubMed  Google Scholar 

  173. Xia Q, Zhou WM, Liang YH et al (2006) MHC haplotypic association in Chinese Han patients with vitiligo. J Eur Acad Dermatol Venereol 20:941–946

    Article  PubMed  CAS  Google Scholar 

  174. Buc M, Fazekasová H, Cechová E et al (1998) Occurance rates of HLA-DRB1, HLA-DQB1, and HLA-DPB1 alleles in patients suffering from vitiligo. Eur J Dermatol 8:13–15

    PubMed  CAS  Google Scholar 

  175. Fain PR, Babu SR, Bennett DC, Spritz RA (2006) HLA class II haplotype DRB1*04-DRB1*0301 contributes to risk of familial generalized vitiligo and early disease onset. Pigment Cell Res 19:51–57

    Article  PubMed  CAS  Google Scholar 

  176. Orozco-Topete R, Córdova-López J, Yamamoto-Furusho JK et al (2005) HLA-DRB1*04 is associated with the genetic susceptibility to develop vitiligo in Mexican patients with autoimmune thyroid disease. J Am Acad Dermatol 52:182–183

    Article  PubMed  Google Scholar 

  177. Zamani M, Spaepen M, Ashgar SS et al (2001) Linkage and association of HLA class II genes with vitiligo in a Dutch population. Br J Dermatol 145:90–94

    Article  PubMed  CAS  Google Scholar 

  178. Abanmi A, Al Harti F, Al Baqami R et al (2006) Association of HLA loci alleles and antigens in Saudi patients with viti-ligo. Arch Dermatol 298:347–352

    Article  CAS  Google Scholar 

  179. Liu JB, Li M, Chen H et al (2007) Association of vitiligo with HLA-A2: a meta-analysis. J Eur Acad Dermatol Venereol 21:205–213

    Article  PubMed  Google Scholar 

  180. Wang J, Zhao YM, Wang Y et al (2007) Association of HLA lass I and II alleles with generalized vitiligo in Chines Hans in North China. Shonghua Yi Xue Yi Chuan Xue Za Zhi 24:221–223

    CAS  Google Scholar 

  181. Wick G, Andersson L, Hala K et al (2006) Avian models with spontaneous autoimmune diseases. Adv Immunol 92:71–117

    Article  PubMed  CAS  Google Scholar 

  182. Hoon DS, Jung T, Naungayan J et al (1989) Modulation of human macrophage function by gangliosides. Immunol Lett 20:269–275

    Article  PubMed  CAS  Google Scholar 

  183. Krüger-Krasagakes S, Krasagakis K, Garbe C, Diamantstein T (1995) Production of cytokines by human melanoma cells and melanocytes. Recent Results Cancer Res 139:155–168

    Article  PubMed  Google Scholar 

  184. Li YL, Yu CL, Yu HS (2000) IgG anti-melanocyte antibodies purified from patients with active vitiligo induce HLA-DR and intercellular adhesion molecule-1 expression and an increase in interleukin-8 release by melanocytes. J Invest Dermatol 115:969–973

    Article  PubMed  CAS  Google Scholar 

  185. Moretti S, Spallanzani A, Amato L et al (2002) Vitiligo and epidermal microenvironment: posible involvement of kerati-nocyte-derived cytokines. Arch Dermatol 138:273–274

    Article  PubMed  Google Scholar 

  186. Smit N, Le Poole I, van den Wijngaard R et al (1993) Expression of different immunological markers by cultured human melanocytes. Arch Dermatol Res 285:356–365

    Article  PubMed  CAS  Google Scholar 

  187. Swope VB, Abdel-Malek Z, Kassem LM, Nordlund JJ (1991) Interleukins 1 alpha and 6 and tumor necrosis factor-alpha are paracrine inhibitors of human melanocyte proliferation and melanogenesis. J Invest Dermatol 96:180–185

    Article  PubMed  CAS  Google Scholar 

  188. Swope VB, Sauder DN, McKenzie RC et al (1994) Synthesis of interleukin-1 alpha and beta by normal human melano-cytes. J Invest Dermatol 102:749–753

    Article  PubMed  CAS  Google Scholar 

  189. Tu CX, Gu JS, Lin XR (2003) Increased interleukin-6 and granulocyte-macrophage colony stimulating factor levels in the sera of patients with non-segmental vitiligo. J Dermatol Sci 31:73–78

    Article  PubMed  CAS  Google Scholar 

  190. Abdallah M, Abdel-Nasr MB, Moussa MH et al (2003) Sequential immunohistochemical study of depigmenting and repigmenting minigrafts in vitiligo. Eur J Dermatol 13:548–552

    PubMed  Google Scholar 

  191. Ogg GS, Dunbar P, Romero P et al (1998) High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med 188:1203–1208

    Article  PubMed  CAS  Google Scholar 

  192. Lang KS, Caroll CC, Muhm A et al (2001) HLA-A2 restricted, melanocyte specific CD8(+) T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MART-1. J Invest Dermatol 116:891–897

    Article  PubMed  CAS  Google Scholar 

  193. Mantovani S, Garbelli S, Palermo B et al (2003) Molecular and functional bases of self-antigen recognition in long-term persisten melanocyte-specific CD8 + T cells in one vitiligo patient. J Invest Dermatol 121:308–314

    Article  PubMed  CAS  Google Scholar 

  194. Wańkowicz-Kalińska A, van den Wijngaard RM, Tigges BJ et al (2003) Immunopoloarization of CD4 + and CD8 + T cells in type-1-like is associated with melanocyte loss in human vitiligo. Lab Invest 83:683–695

    PubMed  Google Scholar 

  195. Wang B, Amerio P, Sauder DN (1999) Role of cytokines in epidermal Langerhans cell migration. J Leukoc Biol 66:33–39

    PubMed  CAS  Google Scholar 

  196. van den Boorn JG, Konijnenberg D, Dellemijn TAM, van der Veen JPW, Bos JD, Melief CJ, Vyth-Dreese FA, Luiten RM (2007) Cytotoxic perilesional T cells cause in situ mel-anocyte apoptosis in vitiligo vulgaris skin. Pigment Cell Res 20:328; abstract

    Google Scholar 

  197. Oyarbide-Valencia K, van den Boorn JG, Denman CJ et al (2006) Therapeutic implication of autoimmune vitiligo T cells. Autoimmun Rev 5:486–493

    Article  PubMed  Google Scholar 

  198. Mandelcorn-Monson RL, Shear NH, Yau E (2003) Cytotoxic T lymphocyte reactivity to gp100, MelanA/MART-1, and tyrosinase, in HLA-A2-positive vitiligo patients. J Invest Dermatol 121:550–556

    Article  PubMed  CAS  Google Scholar 

  199. Palermo B, Campanelli R, Garbelli S et al (2001) Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histo-compatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol 117:326–332

    Article  PubMed  CAS  Google Scholar 

  200. Paglia D, Oran A, Lu C et al (1995) Expression of leukemia inhibitory factor and interleukin-11 by human melanoma cell lines: LIF, IL-6, and IL-11 are not co-regulated. Interferon Cytokine Res 15:455–460

    Article  CAS  Google Scholar 

  201. Lepe V, Moncada B, Castanedo-Cazares JP (2003) A double-blind randomized tial of 01% tacrolimus vs 0.05% clo-betasol for the treatment of childhood vitiligo. Arch Dermatol 139:581–585

    Article  PubMed  CAS  Google Scholar 

  202. Wu CS, Lan CC, Wang LF et al (2007) Effects of psoralens plus ultraviolet A irradiation on cultures epidermal cells in vitro and patients with vitiligo in vivo. Br J Dermatol 156:122–129

    Article  PubMed  CAS  Google Scholar 

  203. Luo BH, Carman Cv, Springer TA (2007) Structural basis of integrin regulation and signaling Ann Rev Immunol 25:619–647

    Article  CAS  Google Scholar 

  204. Ma Q, Shimaoka M, Lu C et al (2002) Activation-induced conformnational changes in the I domain region of lymphocyte function-asociated antigen. J Biol Chem 277:10638–10641

    Article  PubMed  CAS  Google Scholar 

  205. Mirellli FM, Cannella L, Dazzi F, Mirenda V (2008) The highway code of T cell trafficking. J Pathol 214:179–189

    Article  Google Scholar 

  206. Norris DA (1990) Cytokine modulation of adhesion molecules in the regulation of immunologic cytotoxicity of epidermal targets. J Invest Dermatol 95:111S–120S

    Article  PubMed  CAS  Google Scholar 

  207. Gattinoni L, Ranganathan A, Surman DR et al (2006) CTLA-4 dysfunction of self/tumor-reactive CD8+ T-cell dependent. Blood 108:3818–3823

    Article  PubMed  CAS  Google Scholar 

  208. Itirli G, Pehlivan M, Alper S et al (2005) Exon-3 polymo-phism of CTLA-4 gene in Turkish patients with vitiligo. J Dermatol Sci 38:225–222

    Article  PubMed  CAS  Google Scholar 

  209. Kemp EH, Ajjan RA, Waterman EA et al (1999) Analysis of a microsattelite polymorphism of the cytotoxic T-lymphocyte antigen-4 gene in patients with vitiligo. Br J Dermatol 140:73–78

    Article  PubMed  CAS  Google Scholar 

  210. Laberge GS, Bennett DC, Fain PR, Spritz RA (2008) PTPN22 is genetically associated with risk of generalized vitiligo, but CTLA4 is not. J Invest Dermatol 128:1757–1762

    Article  PubMed  CAS  Google Scholar 

  211. Hedley SJ, Metcalfe R, Gawkrodger DJ et al (1998) Vitiligo melanocytes in long-term culture show normal constitutive and cytokine-induced expression of intercellular adhesion molecule-1 and major hitocompatibility complex calss I and class II molecules. Br J Dermatol 139:965–973

    Article  PubMed  CAS  Google Scholar 

  212. Abdool K, Cretney E, Brooks AD et al (2006) NK cells use NKG2D to recognize a mouse renal cancer (Renca), yet require intercellular adhesion molecule-1 expression on the tumor cells for optimal performing-dependent effector function. J Immunol 177:2575–2583

    PubMed  CAS  Google Scholar 

  213. Yamanaka K, DimitroffCJ, Fuhlbrigge RC et al (2008) Vitamins A and D are potent inhibitors of cutaneous lymphocyte-associated antigen expression. J Allergy Clin Immunol 121:148–157

    Article  PubMed  CAS  Google Scholar 

  214. Rychli J, Nehe B (2006) Therapeutic strategies in autoimmune diseases by interfering with leukocyte endothelium interaction. Curr Pharm Des 12:3799–3806

    Article  Google Scholar 

  215. Zollner TM, Assudullah K, Schön MP (2007) Targeting leukocyte trafficking to inflamed skin: still an attractive therapeutic approach? Exp Dermatol 16:1–12

    Article  PubMed  CAS  Google Scholar 

  216. Coulie PG, Brichard V, van Pel et al (1994) A new gene coding for a differentiation antigen recognized by autologous cytotlytic T lymphocytes on HLA-A2 melanomas. J Exp Med 180:35–42

    Article  PubMed  CAS  Google Scholar 

  217. Kawakami Y, Eliyahu S, Delgado CH et al (1994) Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 91:3515–3519

    Article  PubMed  CAS  Google Scholar 

  218. Kawakami Y, Suzuki Y, Shofuda T et al (2000) T cell immune responses against melanoma and melanocytes in cancer and autoimmunity. Pigment Cell Res 13S:163–169

    Article  Google Scholar 

  219. Yee C, Thompson JA, Roche P et al (2000) Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo. J Exp Med 192:1637–1644

    Article  PubMed  CAS  Google Scholar 

  220. Benlalaem H, Labarrière N, Linard B et al (2001) Comprehensive analysis of the frequency of recognition of melanoma-associated antigen (MAA) by CD8 melanoma infiltrating lymphocytes (TIL): implications for immuno-therapy. Eur J Immunol 31:2007–2015

    Article  Google Scholar 

  221. Das PK, van den Wijngaard RM, Wankowicz-Kalinska A, Le Poole IC (2001) A symbiotic concept of autoimmunity and tumout immunity: lessons from vitiligo. Trends Immunol 22:130–136

    Article  PubMed  CAS  Google Scholar 

  222. Sakai C, Kawakami Y, Law LW et al (1997) Melanosomal proteins as melanoma-specific immune targets. Melanoma Res 7:83–95

    Article  PubMed  CAS  Google Scholar 

  223. Osanai K, Takahashi K, Nakamura K et al (2005) Expression and characterization of Rab38, a new member of the Rab small G protein family. Biol Chem 386:143–153

    Article  PubMed  CAS  Google Scholar 

  224. Walton SM, Gerlinger M, de la Rosa O et al (2006) Spantaneous CD8 T cell responses against the melanocyte differentiation antigen RAB38 NY-MEL-1 in melanoma patients. J Immunol 177:8212–8218

    PubMed  CAS  Google Scholar 

  225. Wankowicz-Kalinska A, Maillard RB, Olson K et al (2006) Accumulation of low-avidity anti-melanocortin receptor 1 (anti-MC1R) CD8 + T Cells in the lesional skin of a patient with melanoma-related depigmentation. Melanoma Res 16:165–174

    Article  PubMed  Google Scholar 

  226. Wasmeier C, Romao M, Plowright L et al (2006) Rab38 and Rab 32 control post-Golgi trafficking of melanogenic proteins. J Cell Biol 175:271–281

    Article  PubMed  CAS  Google Scholar 

  227. Széll M, Baltás E, Bodai L et al (2008) The arg160Trp allele of melanocortin-1 receptor gene might protect against viti-ligo. Photchem Photobiol 84:565–571

    Article  CAS  Google Scholar 

  228. Hoogduijn MJ, Ancans J, Suzuki I et al (2002) Melanin-concentrating hormone and its receptor are expressed and functional in human skin. Biochem Biophys Res Commun 296:698–701

    Article  PubMed  CAS  Google Scholar 

  229. Kemp EH, Waterman EA, Hawes BE et al (2002) The melanin-concentrating hormone receptor 1, a novel target of autoantibody responses in vitiligo. J Clin Invest 109:923–930

    PubMed  CAS  Google Scholar 

  230. Verlaet M, Adamantidis A, Coumans B et al (2002) Human immune cells express ppMHC mRNA and functional MCHR1 receptor. FEBS Lett 527:205–210

    Article  PubMed  CAS  Google Scholar 

  231. Durham-Pierre DG, Walters CS, Halder RM et al (1995) Natural killer cell and lymphokine-activated killer cell activity against melanocyte in vitiligo. J Am Acad 33:26–30

    Article  CAS  Google Scholar 

  232. Palermo B, Garbelli S, Mantovani S et al (2001) Qualitative difference between the cytotoxic T lymphocyte responses to melanocyte antigens in melanoma and vitiligo. Eur J Immunol 35:3153–3162

    Article  CAS  Google Scholar 

  233. Van den Boorn JG, Le Poole IC, Luiten RM. (2006) T-cell avidity and tuning: the flexibility connection between tolerance and autoimmunity. Int Rev Immunol 35:235–258

    Article  CAS  Google Scholar 

  234. Pedersen LØ, Vetter CS, Mingari MC et al (2002) Differential expression of inhibitory or activating CD94/NKG2 subtypes on MART-1-reactive T cells in vitiligo versus melanoma: a case report. J Invest Dermatol 118:595–599

    Article  PubMed  CAS  Google Scholar 

  235. Le Poole IC, Riker AI, Quevedo et al (2002) Interferon-gamma reduces melanosomal antigen expresión and recognition of melaoma cells by cytotoxic T cells. Am J Pathol 160:521–528

    Article  Google Scholar 

  236. Moretti S, Spallanzani A, Amato L et al (2002) New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res 15:87–92

    Article  PubMed  CAS  Google Scholar 

  237. Palermo B, Garbelli S, Mantovani S, Giachino C (2005) Transfer of efficient anti-melanocyte T cells from vitiligo donors to melanoma patients as a novel immunotherapeuti-cal strategy. J Autoimmune Dis 31:2–7

    Google Scholar 

  238. Steitz J, Brück J, Lenz J et al (2005) Peripheral CD8 + T cell tolerance against melanocytic self-antigens in the skin is regulated in two steps by CD4 + T cells and local inflamma-tion: implications for the pathophysiology of vitiligo. J Invest Dermatol 124:144–150

    Article  PubMed  CAS  Google Scholar 

  239. Steitz J, Wenzel J, Gaffal E, Tüting T (2004) Initiation and regulation of CD8 + T cells recognizing melanocytic antigens in the epidermis: implcations for the pathophysiology of vitiligo. Eur J Cel Biol 83:797–803

    Article  CAS  Google Scholar 

  240. Armstrong CA, Tara DC, Hart CE et al (1992) Heterogeneity of cytokine production by human malignant melanoma cells. Exp Dermatol 1:27–45

    Article  CAS  Google Scholar 

  241. Baumgartner J, Wilson C, Palmer R et al (2007) Melanoma induces immunosuppression by up-regulating FOXP3(+) regulatory cells. J Surg Res 141:72–77

    Article  PubMed  CAS  Google Scholar 

  242. Le Poole IC, Denman C, Martin AE, Wainwright D, Qin J, Hernandez C, Overbeck A (2006) Functional regulatory T cells are present in peripheral blood but absent from skin of vitiligo patients. J Invest Dermatol 126:155

    Google Scholar 

  243. Hoon DS, Irie RF, Cochran AJ (1988) Gancliosides from human melanoma immunomodulate response of T cells to interleukin-2. Cell Immunol 111:410–419

    Article  PubMed  CAS  Google Scholar 

  244. Breathnatch AS (1963) A new concept of the relation between Langerhans cells and the melanocyte. J Invest Dermatol 40:279–281

    Google Scholar 

  245. Hatchome N, Aiba S, Kato T et al (1987) Possible functional impairment of Langerhans' cells in vitiliginous skin. Reduced ability to elicit dinitrochlorobenzene contact sensitivity reaction and decreased stimulatory effect in the alloge-neic mixed skin cell lymphocyte culture reaction. Arch Dermatol 123:51–54

    Article  PubMed  CAS  Google Scholar 

  246. Le Poole IC, van den Wijngaard RMJGJ, Westerhof W et al (1994) Organotypic culture of human skin to study melano-cyte migration. Pigment Cell Res 7:33–43

    Article  CAS  Google Scholar 

  247. Le Poole IC, van den Wijngaard RMJGJ, Westerhof W et al (1993) Phagocytosis by normal human melanocytes in vitro. Exp Cell Res 205:388–395

    Article  CAS  Google Scholar 

  248. Leenstra S, Das PK, Troost D et al (1995) Human malignant astrocytes expres macrophage phenotype. J Neuroimmunol 56:17–25

    Article  PubMed  CAS  Google Scholar 

  249. Ferrari G, Knight AM, Watts, Pieters J (1997) Distinct intracel-lular compartments involved in invariant chain degradation and antigenic peptide loading of major histocompatibility complex (MHC) class II molecules. J Cell Biol 139:1433–1446

    Article  PubMed  CAS  Google Scholar 

  250. Lepage S, Lapointe (2006) Melanosomal targeting sequences from gp100 are essential for MHC class II-restricted endogenous epitope presentation and mobilization to endosomal compartments. Cancer Res 66:2423–2432

    Article  PubMed  CAS  Google Scholar 

  251. Van Lith M, van Ham M, Griekspoor A et al (2001) Regulation of MHC class II antigen presentation by sorting of recycling HLA-DM/DO and class II within the multive-sicular body. J Immunol 167:884–892

    CAS  Google Scholar 

  252. Le Poole IC, Mutis T, van den Wijngaard RM et al (1993) A novel, antigen presenting function of melanocytes and is possible relationship to hypopigmentary disorders. J Immunol 151:7284–7292

    CAS  Google Scholar 

  253. Lambe T, Leung JC, Bouriez-Jones T et al (2006) CD4 T cell dependent autoimmunity against a melanocyte neoan-tigen induces spontaneous vitiligo and depends upon Fas-Fas ligand interaction. J Immunol 177:3055–3062

    PubMed  CAS  Google Scholar 

  254. Westerhof W, Groot I, Krieg SR et al (1986) Langerhans' cell population studies with OKT6 and HLA-DR monoclonal antibodies in vitligo patients treated with oral phenyla-lanine loading and UVA irradiation. Acta Derm Venereol 66:259–262

    PubMed  CAS  Google Scholar 

  255. Ullrich E, Bonmort M, Mignot G et al (2007) Tumor stress, cell death and the ensuing immune response. Cell Death Diff15:21–28

    Article  CAS  Google Scholar 

  256. Janjic BM, Pimenov A, Whiteside TL et al (2002) Innate direct anticancer effector function of human immature dendritic cells. I. Involvement of an apoptotosis-inducing pathway. J Immunol 15:1823–1830

    Google Scholar 

  257. Lu G, Janjic BM, Janjic C et al (2002) Innate direct anticancer effector function of human immature dendritic cells. II. Role of TNF, lymphotoxin-elapha(1)beta(2), Fas ligand, and TNF-related apoptosis-inducing ligand. J Immunol 168:1831–1838

    PubMed  CAS  Google Scholar 

  258. Le Poole IC, Elmasri WM, Denman CJ et al (2007) Langerhans cells and dendritic cells are cytotoxic toards HPV16 E6 and E7 expressing target cells. Cancer Immunol Immunother 57:789–797

    Article  PubMed  Google Scholar 

  259. Perfetti L, Cespa M, Nume A, Orecchia G (1991) Prevalence of vitiligo. A preliminary report. Dermatologica 182:218–220

    Article  PubMed  CAS  Google Scholar 

  260. Grützkau A, Henz BM, Kirchhof L et al (2000) Alpha-melanocyte stimulating hormone acts as a selective inducer of secretory functions in human mast cells. Biochem Biophys Res Commun 278:14–19

    Article  PubMed  CAS  Google Scholar 

  261. Ichimiya M, Ohmura A, Muto M (1998) Numerous hypop-igmented patches associated with atopic dermatitis. J Dermatol 25:759–761

    PubMed  CAS  Google Scholar 

  262. Nader-Djalal N, Ansarin K (1996) Hypopigmented skin lesions associated with atotpic dermatitis in asthma. J Asthma 33:231–238

    Article  PubMed  CAS  Google Scholar 

  263. Sugita K, Izu K, Tokura Y (2006) Vitiligo with inflamma-tory raised borders, associated with atopic dermatitis. Clin Exp Dermatol 31:80–82

    Article  PubMed  CAS  Google Scholar 

  264. Wehrle-Aller B (2003) The role of Kit-ligand in melano-cyte development and epidermal homeastasis. Pigment Cell Res 16:287–296

    Article  Google Scholar 

  265. Norris A, Todd C, Graham A et al (1996) The expression of the c-kit receptor by epidermal melanocytes may be reduced in vitiligo. Br J Dermatol 134:299–306

    Article  PubMed  CAS  Google Scholar 

  266. Salmasi JM, Khartonova NI, Kazimirsky et al (2003) Characterization of lymphocyte surface markers in patients with vitiligo. Russ J Immunol 8:47–52

    PubMed  Google Scholar 

  267. Mahmoud F, Abul H, Haines D et al (2002) Decreased total numbers of peripheral blood lymphocytes with elevated percentages of CD4 + CD45RO + and CD4 + CD25 + of T-helper cells in non-segmental vitiligo. J Dermatol 29:68–73

    PubMed  Google Scholar 

  268. Jin Y, Mailloux CM, Gowan K et al (2007) NALP1 in viti-ligo-associated multiple autoimmune disease. N Engl J Med 356:1216–1225

    Article  PubMed  CAS  Google Scholar 

  269. Church LD, Cook GP, McDermott MF (2008) Primer: inflammasomes and interleukin 1 beta in inflammatory disorders. Nat Clin Pract Rheumatol 4:34–42

    Article  PubMed  CAS  Google Scholar 

  270. Liu F, Lo CF, Ning X et al (2004) Expression of NALP1 in cerbellar granule neurons stimulate apoptosis. Cell Signal 16:1013–1021

    PubMed  CAS  Google Scholar 

  271. D'Hooge E, Buttiglieri S, Bisignano G et al (2007) Apoptotic renal cell carcinoma cells are better inducers of cross-presenting activity than their necrotic counterpart. Int J Immunopathol Pharmacol 20:707–717

    Google Scholar 

  272. Reschner A, Hubert P, Delvene P et al (2008) Innate lymphocyte and dendritic cells cross-talk: a key factor in the regulation of the immune response. Clin Exp Immunol 152:219–226

    Article  PubMed  CAS  Google Scholar 

  273. Winter H, van den Engel NK, Rüttinger D et al (2007) Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specifc secetion of chemokines and stimulation of B16BL6 melanoma to secrete cytokines. J Transl Med 24:56

    Article  CAS  Google Scholar 

  274. Handra S, Dogra S (2003) Epidemiology of childhood viti-ligo: a study of 625 patients from north India. Pediatr Dermatol 20:207–210

    Article  Google Scholar 

  275. Lane C, Leitch J, Tan X et al (2004) Vaccination-induced autoimmune vitiligo is a consequence of secondary trauma to the skin. Cancer Res 64:1509–1514

    Article  PubMed  CAS  Google Scholar 

  276. Silva MT, do Vale A, Dos Santos NM (2008) Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 13:463–482

    Article  PubMed  Google Scholar 

  277. Tesniere A, Panaretakis T, Kepp O et al (2008) Molecular characteristics of immunogenic cancer cell death. Cell Death Diff15:3–12

    Article  CAS  Google Scholar 

  278. Sanchez-Perez L, Kottke T, Daniels GA (2006) Killing of normal melanocytes, combined with heat shock protein 70 and CD40L expression, cures large established melanomas. J Immunol 177:4168–4177

    PubMed  CAS  Google Scholar 

  279. Denman CJ, McCracken J, Hariharan V et al (2008) HSP70i accelerates depigmentation in a mouse model of autoimmune vitiligo. J Invest Dermatol 128:2041–2048

    Article  PubMed  CAS  Google Scholar 

  280. Kottke T, Sanchez-Perez L, Diaz RM et al (2007) Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res 67:11970–11979

    Article  PubMed  CAS  Google Scholar 

  281. Vega VL, Rodriguez-Silva M, Frey T (2008) Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates-associated macrophages. J Immunol 180:4299–4307

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alain Taïeb , Anna Peroni , E. Helen Kemp or I. Caroline Le Poole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taïeb, A. et al. (2010). Immune/Inflammatory Aspects. In: Picardo, M., Taïeb, A. (eds) Vitiligo. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69361-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69361-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69360-4

  • Online ISBN: 978-3-540-69361-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics