Skip to main content

Combining Densely Sampled Form and Motion for Human Action Recognition

  • Conference paper
Book cover Pattern Recognition (DAGM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5096))

Included in the following conference series:

Abstract

We present a method for human action recognition from video, which exploits both form (local shape) and motion (local flow). Inspired by models of the human visual system, the two feature sets are processed independently in separate channels. The form channel extracts a dense local shape representation from every frame, while the motion channel extracts dense optic flow from the frame and its immediate predecessor. The same processing pipeline is applied in both channels: feature maps are pooled locally, down-sampled, and compared to a collection of learnt templates, yielding a vector of similarity scores. In a final step, the two score vectors are merged, and recognition is performed with a discriminative classifier. In an evaluation on two standard datasets our method outperforms the state-of-the-art, confirming that the combination of form and motion improves recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, S., Basharat, A., Shah, M.: Chaotic invariants for human action recognition. In: Proc. ICCV (2007)

    Google Scholar 

  2. Beintema, J.A., Lappe, M.: Perception of biological motion without local image motion. P. Natl. Acad. Sci. USA 99, 5661–5663 (2002)

    Article  Google Scholar 

  3. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: Proc. ICCV (2005)

    Google Scholar 

  4. Carlsson, S., Sullivan, J.: Action recognition by shape matching to key frames. In: Proc. Workshop on Models versus Exemplars in Computer Vision (2001)

    Google Scholar 

  5. Casile, A., Giese, M.A.: Critical features for the recognition of biological motion. J. Vision 5, 348–360 (2005)

    Article  Google Scholar 

  6. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE T. Pattern Anal. 25(5), 564–575 (2003)

    Article  Google Scholar 

  7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc ICCV, pp. 886–893 (2005)

    Google Scholar 

  8. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: Workshop on Performance Evaluation of Tracking and Surveillance (VS-PETS) (2005)

    Google Scholar 

  9. Efros, A.A., Berg, A.C., Mori, G., Malik, J.: Recognizing action at a distance. In: Proc. ICCV (2003)

    Google Scholar 

  10. Felleman, D.J., van Essen, D.C.: Distributed hierarchical processing in the primate visual cortex. Cereb. Cortex 1, 1–47 (1991)

    Article  Google Scholar 

  11. Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A. 4(12), 2379–2394 (1987)

    Article  Google Scholar 

  12. Fukushima, K.: Neocognitron: a self-organizing neural network model for mechanisms of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gawne, T.J., Martin, J.: Response of primate visual cortical V4 neurons to two simultaneously presented stimuli. J. Neurophysiol. 88, 1128–1135 (2002)

    Article  Google Scholar 

  14. Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nat. Neurosci. 4, 179–192 (2003)

    Google Scholar 

  15. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond) 160, 106–154 (1962)

    Google Scholar 

  16. Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: Proc. ICCV (2007)

    Google Scholar 

  17. Lampl, I., Ferster, D., Poggio, T., Riesenhuber, M.: Intracellular measurements of spatial integration and the max operation in complex cells of the cat primary visual cortex. J. Neurophysiol. 92, 2704–2713 (2004)

    Article  Google Scholar 

  18. Laptev, I., Lindeberg, T.: Local descriptors for spatio-temporal recognition. In: Proc. ICCV (2003)

    Google Scholar 

  19. Niebles, J.C., Fei-Fei, L.: A hierarchical model of shape and appearance for human action classification. In: Proc. CVPR (2007)

    Google Scholar 

  20. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatio-temporal words. In: Proc. BMVC (2006)

    Google Scholar 

  21. Rao, C., Yilmaz, A., Shah, M.: View-invariant representation and recognition of actions. Int. J. Comput. Vision 50(2), 203–226 (2002)

    Article  MATH  Google Scholar 

  22. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)

    Article  Google Scholar 

  23. Schüldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proc. ICPR (2004)

    Google Scholar 

  24. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Object recognition with cortex-like mechanisms. IEEE T. Pattern Anal. 29(3), 411–426 (2007)

    Article  Google Scholar 

  25. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: Proc. CVPR (2005)

    Google Scholar 

  26. Wang, L., Suter, D.: Recognizing human activities from silhouettes: motion subspace and factorial discriminative graphical model. In: Proc. CVPR (2007)

    Google Scholar 

  27. Yacoob, Y., Black, M.J.: Parameterized modeling and recognition of activities. Comput. Vis. Image Und. 72(2), 232–247 (1999)

    Article  Google Scholar 

  28. Zach, C., Pock, T., Bischof, H.: A duality-based approach to realtime TV − L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerhard Rigoll

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schindler, K., van Gool, L. (2008). Combining Densely Sampled Form and Motion for Human Action Recognition. In: Rigoll, G. (eds) Pattern Recognition. DAGM 2008. Lecture Notes in Computer Science, vol 5096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69321-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69321-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69320-8

  • Online ISBN: 978-3-540-69321-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics