Skip to main content

Discrete-Time Feedback for Chaos Control and Synchronization

  • Chapter
Robust Synchronization of Chaotic Systems via Feedback

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 378))

  • 622 Accesses

Discrete - Time Control of Systems with Friction

Now a discrete-time approach to feedback controller is discussed to control a particular system which describes a friction phenomenon. This system is used to introduce some features of the discrete time controller for chaos control. The friction system comprises some interesting dynamical properties, e.g., an invariant manifold characterized by zero velocity and velocity direction. Such properties allow a practical justification of the feedback design, which yields control of the measured state and its time derivative. The mechanical justification and the feedback design allow us to introduce the synergetic interpretation. Here the self-organization of a simple dynamical system is discussed from the understanding of the effect of control parameters acting over mechanical systems. The control parameter is yielded by the so-called controller. The controller is a feedback scheme from a finite-differences approximation. Such justification leads us to develop a chaos suppression scheme. The main idea is to counteract the nonlinear forces acting onto (or into) the systems and compensates the external perturbation forces acting over the nonlinear systems. The goal is to compute an estimate value of the uncertain force in such way that nonlinear systems can be controlled. This is, the synergetics of the second-order driven oscillators is studied from the point of view of the control theory. In principle, the finite-difference is able to achieve chaos control and synchronization. In addition, we shall see that a discrete time approach feedback attains synchronization against master/slave mismatches. Indeed, the procedure yields synchronization of strictly different oscillators. In this sense, it is said that controller is robust. This means that self-organization of this class of oscillators can be achieved in spite of master/slave mismatches (even if oscillators are strictly different). We belief that synergetics is due to feedback structure into the nonlinear system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armtrong-Hélouvry, B.: Control of Machines with Friction. Kluwer Academic Press, Boston (1991)

    Google Scholar 

  2. Canudas de Wit, C., Noël, P., Aubin, A., Brogliato, B.: Adaptive Friction Compensation: low velocities. Int. J. Robotics Resch. 10, 189 (1991)

    Article  Google Scholar 

  3. Dupont, P.E.: Avoiding stick-slip in possition and force control through feedback. In: Proc. of the 1991 IEEE 1991 Int. Conf. Robotics Automation, Sacramento, pp. 1470–1475 (1991)

    Google Scholar 

  4. Armtrong-Hélouvry, B.: Stick Slip and Control in Low-Sped Motion. IEEE Trans. Autom. Contr. 38, 1483–1496 (1993)

    Article  Google Scholar 

  5. Ot, E., Grebogi, C., Yorke, J.A.: Controling Chaos. Phys. Rev. Letts. 64, 1196 (1990)

    Article  Google Scholar 

  6. Alvarez-Ramírez, J., Garido, R., Femat, R.: Control of Systems with Friction. Phys. Rev. E. 51, 6235 (1995)

    Article  Google Scholar 

  7. Hikihara, T., Moon, F.C.: Chaotic levitated motion of a magnet supported by superconductor. Phys. Letts. A. 191, 279 (1994)

    Article  Google Scholar 

  8. Mosayebi, F., Qammar, H.K., Hartley, T.T.: Adaptive estimation and synchronization of chaotic systems. Phys. Lett. A 161, 255 (1991)

    Article  Google Scholar 

  9. Alvarez-Ramírez, J., Vargas-Vilamil, F.: State estimation for a class of nonlinear oscillators with chaotic attractor. Phys. Lett. A 197, 116 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, G., Dong, X.: On feedback control of chaotic continuous-time systems. IEEE Trans. Circ. and Syst. I 40, 591 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dorato, P.: Robust Control. IEEE Press, New York (1987)

    Google Scholar 

  12. Aström, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  13. Wiggins, S.: Global Bifurcations and Chaos. Springer, New York (1988)

    MATH  Google Scholar 

  14. Takens, F.: Dynamical System and Turbulence. Rand, D., Young, L.S. (eds.). Springer, Berlin (1981)

    Google Scholar 

  15. Esfandiari, F., Khalil, H.K.: Output feedback stabilization of fuly linearizable systems. Int. J. Control 56, 1007 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bai-Lin, H.: Chaos II. World Scientific Publishing Co., Singapore (1990)

    MATH  Google Scholar 

  17. Schuster, H.G.: Deterministic Chaos. VCH Publishers, Germany (1989)

    MATH  Google Scholar 

  18. Carrol, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circ. and Syst. I 38, 453 (1991)

    Article  Google Scholar 

  19. Nijmeijer, H., Berghuis, H.: On Lyapunov control of the Dufing equation. IEEE Trans. Circ. and Syst. 42, 473 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wu, C.W., Yang, T., Chua, L.O.: On adaptive synchronization and control of nonlinear dynamical systems. Int. J. of Bifurcation and Chaos 6, 445 (1996)

    Google Scholar 

  21. Di Bernardo, M.: An adaptive approach to the control and synchronization of continuous-time systems. Int. J. of Bifurcation and Chaos 6, 557 (1996)

    Article  MATH  Google Scholar 

  22. Alvarez-Ramirez, J., Femat, R., Gonzalez, J.: A time delay coordinates strategy to control a class of chaotic oscillators. Phys. Lett. A 221, 41 (1996)

    Article  MathSciNet  Google Scholar 

  23. Femat, R., Alvarez-Ramirez, J., Gonzalez, J.: A strategy to control chaos in nonlinear driven oscillators with least prior knowledge. Phys. Lett. A 224, 271 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Femat, R.: A control scheme for the motion of a magnet supported by type-II superconductor. Physica D 111, 347 (1998)

    Article  MATH  Google Scholar 

  25. Aström, K.J., Witenmark, B.: Adaptive Control. Addison-Wesley, NY (1989)

    MATH  Google Scholar 

  26. Ostojic, M.: Numerical approach to nonlinear control design. Trans. of the ASME 118, 332 (1996)

    MATH  Google Scholar 

  27. Kincaid, D., Cheney, W.: Numerical Analysis: Mathematics and Scientific Computing. Brooks/Cole Publishing Co. (1991)

    Google Scholar 

  28. Nakamura, S.: Numerical Analysis and Graphic Visualization with MATLAB. Prentice Hall Inc., NY (1995)

    Google Scholar 

  29. González, J., Femat, R., Alvaez-Ramírez, J., Aguilar, R., Barron, M.: A discrete approach to the control and synchronization of a class of chaotic oscillators. IEEE Trans. on Circ. and Syst. I 46, 1139 (1999)

    Article  MATH  Google Scholar 

  30. Wu, C.W., Chua, L.O.: Synchronization in an aray of linearly coupled dynamical systems. IEEE Trans. Circ. and Syst. I 42, 430–447 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kapitaniak, T., Sekeita, M., Ogorzalek, M.: Montone synchronization of chaos. Int. J. of Bifur. and Chaos 6, 211–217 (1996)

    Article  MATH  Google Scholar 

  32. Grassi, G., Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via scalar signal. IEEE Trans. Circ. and Syst. I 44, 1011–1014 (1997)

    Article  Google Scholar 

  33. Nijmeijer, H., Mareels, M.Y.: An observer looks at synchronization. IEEE Trans. Circ. and Syst. I 44, 882–890 (1997)

    Article  MathSciNet  Google Scholar 

  34. Xiaofeng, G., Lai, C.H.: On the synchronization of different chaotic oscillations Chaos. Solitons and Fractals 11, 1231–1235 (2000)

    Article  MATH  Google Scholar 

  35. Femat, R., Alvarez-Ramírez, J.: Synchronization of a clas of strictly different oscillators. Phys. Letts. A 236, 307–313 (1997)

    Article  MATH  Google Scholar 

  36. Bragard, J., Boccalletti, S.: Phys. Rev. E 62, 6346–6351 (2000)

    Article  Google Scholar 

  37. Brown, R., Kocarev, L.: A unifying framework of chaos synchronization for dynamical systems. Chaos 10, 344–349 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Femat, R., Solís-Perales, G.: On the chaos synchronization phenomena. Phys. Letts. A 262, 50–60 (1999)

    Article  MATH  Google Scholar 

  39. Rulkov, N.F., Sushchik, M.M.: Robustness of synchronized chaotic oscillations. Int. J. of Bifur. and Chaos 7, 625–643 (1997)

    Article  MATH  Google Scholar 

  40. Bazhenov, M., Huerta, R., Rabinovich, M.I., Sejnowski, T.: Cooperative behavior of a chain of synapticaly coupled chaotic neurons. Physica D 116, 392–400 (1998)

    Article  MATH  Google Scholar 

  41. Aguirre, L.A., Billings, S.A.: Closed-loop suppresion of chaos in nonlinear driven oscillators. J. Nonlinear Sci. 5, 189–206 (1995)

    Article  MATH  Google Scholar 

  42. Tass, P., Haken, H.: Synchronized oscillations in the visual cortex - a synergetics model. Biol. Cybern. 74, 31–39 (1996)

    Article  MATH  Google Scholar 

  43. Huerta, R., Bazhenov, M., Rabinovich, M.I.: Cluster of synchronization and bistability in a latices of chaotic neurons. Europhys. Letts. 43, 719–724 (1998)

    Article  Google Scholar 

  44. Pyragas, K.: Transmission of signals via synchronization of chaotic time-delay systems. Int. J. of Bifur. and Chaos 8, 1839–1842 (1998)

    Article  Google Scholar 

  45. Short, K.M.: Steps toward unmasking secure communications. Int. J. of Bifur. and Chaos 4, 959–977 (1994)

    Article  MATH  Google Scholar 

  46. Mosayebi, F., Qammar, H.K., Hartley, T.T.: Adaptive estimation and synchronization of chaotic systems. Phys. Letts. A 161, 255–262 (1991)

    Article  Google Scholar 

  47. Terman, D., Koppel, N., Bose, A.: Dynamics of two mutually coupled slow inhibitory neurons. Physica D 117, 241–275 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  48. Lima, R., Pettini, M.: Suppresion of chaos by resonant parametric perturbations. Phys. Rev. A 41, 726–733 (1990)

    Article  MathSciNet  Google Scholar 

  49. Pecora, L.M., Carrol, T.L.: Synchronization in Chaotic Systems. Phys. Rev. Letts. 64, 821–824 (1990)

    Article  Google Scholar 

  50. Liu, Z., Lai, Y.C., Hoppensteadt, F.C.: Pase clustering and transition to phase synchronization in a large number of coupled nonlinear oscillators. Phys. Rev. E 63, 055201 (2000)

    Article  Google Scholar 

  51. di Bernardo, M.: An adaptive approach to the control and synchronization of continuous-time chaotic systems. Int. J. of Bifuc. and Chaos 6, 557 (1996)

    Article  MATH  Google Scholar 

  52. Liu, Z., Shigang, C.: General method of synchronization. Phys. Rev. E 55, 199–204 (1997)

    Article  Google Scholar 

  53. Femat, R., Capistran-Tobías, J., Solís-Perales, G.: Laplace domain controllers for chaos control. Phys. Letts. A 252, 27–36 (1999)

    Article  Google Scholar 

  54. le Noble, W.J.: Highlights of organic chemistry. Marcel Dekker (1974)

    Google Scholar 

  55. Bowong, S.: Stability analysis for the synchronization of chaotic systems with different order: application to secure communications. Phys. Lett. A 326, 102–113 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Femat, R., Solis-Perales, G. (2008). Discrete-Time Feedback for Chaos Control and Synchronization. In: Robust Synchronization of Chaotic Systems via Feedback. Lecture Notes in Control and Information Sciences, vol 378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69307-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69307-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69306-2

  • Online ISBN: 978-3-540-69307-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics