# Discrete-Time Feedback for Chaos Control and Synchronization

• Ricardo Femat
• Gualberto Solis-Perales
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 378)

## Discrete - Time Control of Systems with Friction

Now a discrete-time approach to feedback controller is discussed to control a particular system which describes a friction phenomenon. This system is used to introduce some features of the discrete time controller for chaos control. The friction system comprises some interesting dynamical properties, e.g., an invariant manifold characterized by zero velocity and velocity direction. Such properties allow a practical justification of the feedback design, which yields control of the measured state and its time derivative. The mechanical justification and the feedback design allow us to introduce the synergetic interpretation. Here the self-organization of a simple dynamical system is discussed from the understanding of the effect of control parameters acting over mechanical systems. The control parameter is yielded by the so-called controller. The controller is a feedback scheme from a finite-differences approximation. Such justification leads us to develop a chaos suppression scheme. The main idea is to counteract the nonlinear forces acting onto (or into) the systems and compensates the external perturbation forces acting over the nonlinear systems. The goal is to compute an estimate value of the uncertain force in such way that nonlinear systems can be controlled. This is, the synergetics of the second-order driven oscillators is studied from the point of view of the control theory. In principle, the finite-difference is able to achieve chaos control and synchronization. In addition, we shall see that a discrete time approach feedback attains synchronization against master/slave mismatches. Indeed, the procedure yields synchronization of strictly different oscillators. In this sense, it is said that controller is robust. This means that self-organization of this class of oscillators can be achieved in spite of master/slave mismatches (even if oscillators are strictly different). We belief that synergetics is due to feedback structure into the nonlinear system.

## Keywords

Chaotic System Phase Portrait Synchronization Error Control Command Slave System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Armtrong-Hélouvry, B.: Control of Machines with Friction. Kluwer Academic Press, Boston (1991)Google Scholar
2. 2.
Canudas de Wit, C., Noël, P., Aubin, A., Brogliato, B.: Adaptive Friction Compensation: low velocities. Int. J. Robotics Resch. 10, 189 (1991)
3. 3.
Dupont, P.E.: Avoiding stick-slip in possition and force control through feedback. In: Proc. of the 1991 IEEE 1991 Int. Conf. Robotics Automation, Sacramento, pp. 1470–1475 (1991)Google Scholar
4. 4.
Armtrong-Hélouvry, B.: Stick Slip and Control in Low-Sped Motion. IEEE Trans. Autom. Contr. 38, 1483–1496 (1993)
5. 5.
Ot, E., Grebogi, C., Yorke, J.A.: Controling Chaos. Phys. Rev. Letts. 64, 1196 (1990)
6. 6.
Alvarez-Ramírez, J., Garido, R., Femat, R.: Control of Systems with Friction. Phys. Rev. E. 51, 6235 (1995)
7. 7.
Hikihara, T., Moon, F.C.: Chaotic levitated motion of a magnet supported by superconductor. Phys. Letts. A. 191, 279 (1994)
8. 8.
Mosayebi, F., Qammar, H.K., Hartley, T.T.: Adaptive estimation and synchronization of chaotic systems. Phys. Lett. A 161, 255 (1991)
9. 9.
Alvarez-Ramírez, J., Vargas-Vilamil, F.: State estimation for a class of nonlinear oscillators with chaotic attractor. Phys. Lett. A 197, 116 (1995)
10. 10.
Chen, G., Dong, X.: On feedback control of chaotic continuous-time systems. IEEE Trans. Circ. and Syst. I 40, 591 (1993)
11. 11.
Dorato, P.: Robust Control. IEEE Press, New York (1987)Google Scholar
12. 12.
13. 13.
Wiggins, S.: Global Bifurcations and Chaos. Springer, New York (1988)
14. 14.
Takens, F.: Dynamical System and Turbulence. Rand, D., Young, L.S. (eds.). Springer, Berlin (1981)Google Scholar
15. 15.
Esfandiari, F., Khalil, H.K.: Output feedback stabilization of fuly linearizable systems. Int. J. Control 56, 1007 (1992)
16. 16.
Bai-Lin, H.: Chaos II. World Scientific Publishing Co., Singapore (1990)
17. 17.
Schuster, H.G.: Deterministic Chaos. VCH Publishers, Germany (1989)
18. 18.
Carrol, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circ. and Syst. I 38, 453 (1991)
19. 19.
Nijmeijer, H., Berghuis, H.: On Lyapunov control of the Dufing equation. IEEE Trans. Circ. and Syst. 42, 473 (1995)
20. 20.
Wu, C.W., Yang, T., Chua, L.O.: On adaptive synchronization and control of nonlinear dynamical systems. Int. J. of Bifurcation and Chaos 6, 445 (1996)Google Scholar
21. 21.
Di Bernardo, M.: An adaptive approach to the control and synchronization of continuous-time systems. Int. J. of Bifurcation and Chaos 6, 557 (1996)
22. 22.
Alvarez-Ramirez, J., Femat, R., Gonzalez, J.: A time delay coordinates strategy to control a class of chaotic oscillators. Phys. Lett. A 221, 41 (1996)
23. 23.
Femat, R., Alvarez-Ramirez, J., Gonzalez, J.: A strategy to control chaos in nonlinear driven oscillators with least prior knowledge. Phys. Lett. A 224, 271 (1997)
24. 24.
Femat, R.: A control scheme for the motion of a magnet supported by type-II superconductor. Physica D 111, 347 (1998)
25. 25.
26. 26.
Ostojic, M.: Numerical approach to nonlinear control design. Trans. of the ASME 118, 332 (1996)
27. 27.
Kincaid, D., Cheney, W.: Numerical Analysis: Mathematics and Scientific Computing. Brooks/Cole Publishing Co. (1991)Google Scholar
28. 28.
Nakamura, S.: Numerical Analysis and Graphic Visualization with MATLAB. Prentice Hall Inc., NY (1995)Google Scholar
29. 29.
González, J., Femat, R., Alvaez-Ramírez, J., Aguilar, R., Barron, M.: A discrete approach to the control and synchronization of a class of chaotic oscillators. IEEE Trans. on Circ. and Syst. I 46, 1139 (1999)
30. 30.
Wu, C.W., Chua, L.O.: Synchronization in an aray of linearly coupled dynamical systems. IEEE Trans. Circ. and Syst. I 42, 430–447 (1995)
31. 31.
Kapitaniak, T., Sekeita, M., Ogorzalek, M.: Montone synchronization of chaos. Int. J. of Bifur. and Chaos 6, 211–217 (1996)
32. 32.
Grassi, G., Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via scalar signal. IEEE Trans. Circ. and Syst. I 44, 1011–1014 (1997)
33. 33.
Nijmeijer, H., Mareels, M.Y.: An observer looks at synchronization. IEEE Trans. Circ. and Syst. I 44, 882–890 (1997)
34. 34.
Xiaofeng, G., Lai, C.H.: On the synchronization of different chaotic oscillations Chaos. Solitons and Fractals 11, 1231–1235 (2000)
35. 35.
Femat, R., Alvarez-Ramírez, J.: Synchronization of a clas of strictly different oscillators. Phys. Letts. A 236, 307–313 (1997)
36. 36.
Bragard, J., Boccalletti, S.: Phys. Rev. E 62, 6346–6351 (2000)
37. 37.
Brown, R., Kocarev, L.: A unifying framework of chaos synchronization for dynamical systems. Chaos 10, 344–349 (2000)
38. 38.
Femat, R., Solís-Perales, G.: On the chaos synchronization phenomena. Phys. Letts. A 262, 50–60 (1999)
39. 39.
Rulkov, N.F., Sushchik, M.M.: Robustness of synchronized chaotic oscillations. Int. J. of Bifur. and Chaos 7, 625–643 (1997)
40. 40.
Bazhenov, M., Huerta, R., Rabinovich, M.I., Sejnowski, T.: Cooperative behavior of a chain of synapticaly coupled chaotic neurons. Physica D 116, 392–400 (1998)
41. 41.
Aguirre, L.A., Billings, S.A.: Closed-loop suppresion of chaos in nonlinear driven oscillators. J. Nonlinear Sci. 5, 189–206 (1995)
42. 42.
Tass, P., Haken, H.: Synchronized oscillations in the visual cortex - a synergetics model. Biol. Cybern. 74, 31–39 (1996)
43. 43.
Huerta, R., Bazhenov, M., Rabinovich, M.I.: Cluster of synchronization and bistability in a latices of chaotic neurons. Europhys. Letts. 43, 719–724 (1998)
44. 44.
Pyragas, K.: Transmission of signals via synchronization of chaotic time-delay systems. Int. J. of Bifur. and Chaos 8, 1839–1842 (1998)
45. 45.
Short, K.M.: Steps toward unmasking secure communications. Int. J. of Bifur. and Chaos 4, 959–977 (1994)
46. 46.
Mosayebi, F., Qammar, H.K., Hartley, T.T.: Adaptive estimation and synchronization of chaotic systems. Phys. Letts. A 161, 255–262 (1991)
47. 47.
Terman, D., Koppel, N., Bose, A.: Dynamics of two mutually coupled slow inhibitory neurons. Physica D 117, 241–275 (1998)
48. 48.
Lima, R., Pettini, M.: Suppresion of chaos by resonant parametric perturbations. Phys. Rev. A 41, 726–733 (1990)
49. 49.
Pecora, L.M., Carrol, T.L.: Synchronization in Chaotic Systems. Phys. Rev. Letts. 64, 821–824 (1990)
50. 50.
Liu, Z., Lai, Y.C., Hoppensteadt, F.C.: Pase clustering and transition to phase synchronization in a large number of coupled nonlinear oscillators. Phys. Rev. E 63, 055201 (2000)
51. 51.
di Bernardo, M.: An adaptive approach to the control and synchronization of continuous-time chaotic systems. Int. J. of Bifuc. and Chaos 6, 557 (1996)
52. 52.
Liu, Z., Shigang, C.: General method of synchronization. Phys. Rev. E 55, 199–204 (1997)
53. 53.
Femat, R., Capistran-Tobías, J., Solís-Perales, G.: Laplace domain controllers for chaos control. Phys. Letts. A 252, 27–36 (1999)
54. 54.
le Noble, W.J.: Highlights of organic chemistry. Marcel Dekker (1974)Google Scholar
55. 55.
Bowong, S.: Stability analysis for the synchronization of chaotic systems with different order: application to secure communications. Phys. Lett. A 326, 102–113 (2004)