Discrete-Time Feedback for Chaos Control and Synchronization

  • Ricardo Femat
  • Gualberto Solis-Perales
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 378)

Discrete - Time Control of Systems with Friction

Now a discrete-time approach to feedback controller is discussed to control a particular system which describes a friction phenomenon. This system is used to introduce some features of the discrete time controller for chaos control. The friction system comprises some interesting dynamical properties, e.g., an invariant manifold characterized by zero velocity and velocity direction. Such properties allow a practical justification of the feedback design, which yields control of the measured state and its time derivative. The mechanical justification and the feedback design allow us to introduce the synergetic interpretation. Here the self-organization of a simple dynamical system is discussed from the understanding of the effect of control parameters acting over mechanical systems. The control parameter is yielded by the so-called controller. The controller is a feedback scheme from a finite-differences approximation. Such justification leads us to develop a chaos suppression scheme. The main idea is to counteract the nonlinear forces acting onto (or into) the systems and compensates the external perturbation forces acting over the nonlinear systems. The goal is to compute an estimate value of the uncertain force in such way that nonlinear systems can be controlled. This is, the synergetics of the second-order driven oscillators is studied from the point of view of the control theory. In principle, the finite-difference is able to achieve chaos control and synchronization. In addition, we shall see that a discrete time approach feedback attains synchronization against master/slave mismatches. Indeed, the procedure yields synchronization of strictly different oscillators. In this sense, it is said that controller is robust. This means that self-organization of this class of oscillators can be achieved in spite of master/slave mismatches (even if oscillators are strictly different). We belief that synergetics is due to feedback structure into the nonlinear system.


Chaotic System Phase Portrait Synchronization Error Control Command Slave System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armtrong-Hélouvry, B.: Control of Machines with Friction. Kluwer Academic Press, Boston (1991)Google Scholar
  2. 2.
    Canudas de Wit, C., Noël, P., Aubin, A., Brogliato, B.: Adaptive Friction Compensation: low velocities. Int. J. Robotics Resch. 10, 189 (1991)CrossRefGoogle Scholar
  3. 3.
    Dupont, P.E.: Avoiding stick-slip in possition and force control through feedback. In: Proc. of the 1991 IEEE 1991 Int. Conf. Robotics Automation, Sacramento, pp. 1470–1475 (1991)Google Scholar
  4. 4.
    Armtrong-Hélouvry, B.: Stick Slip and Control in Low-Sped Motion. IEEE Trans. Autom. Contr. 38, 1483–1496 (1993)CrossRefGoogle Scholar
  5. 5.
    Ot, E., Grebogi, C., Yorke, J.A.: Controling Chaos. Phys. Rev. Letts. 64, 1196 (1990)CrossRefGoogle Scholar
  6. 6.
    Alvarez-Ramírez, J., Garido, R., Femat, R.: Control of Systems with Friction. Phys. Rev. E. 51, 6235 (1995)CrossRefGoogle Scholar
  7. 7.
    Hikihara, T., Moon, F.C.: Chaotic levitated motion of a magnet supported by superconductor. Phys. Letts. A. 191, 279 (1994)CrossRefGoogle Scholar
  8. 8.
    Mosayebi, F., Qammar, H.K., Hartley, T.T.: Adaptive estimation and synchronization of chaotic systems. Phys. Lett. A 161, 255 (1991)CrossRefGoogle Scholar
  9. 9.
    Alvarez-Ramírez, J., Vargas-Vilamil, F.: State estimation for a class of nonlinear oscillators with chaotic attractor. Phys. Lett. A 197, 116 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chen, G., Dong, X.: On feedback control of chaotic continuous-time systems. IEEE Trans. Circ. and Syst. I 40, 591 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dorato, P.: Robust Control. IEEE Press, New York (1987)Google Scholar
  12. 12.
    Aström, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, New York (1989)zbMATHGoogle Scholar
  13. 13.
    Wiggins, S.: Global Bifurcations and Chaos. Springer, New York (1988)zbMATHGoogle Scholar
  14. 14.
    Takens, F.: Dynamical System and Turbulence. Rand, D., Young, L.S. (eds.). Springer, Berlin (1981)Google Scholar
  15. 15.
    Esfandiari, F., Khalil, H.K.: Output feedback stabilization of fuly linearizable systems. Int. J. Control 56, 1007 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Bai-Lin, H.: Chaos II. World Scientific Publishing Co., Singapore (1990)zbMATHGoogle Scholar
  17. 17.
    Schuster, H.G.: Deterministic Chaos. VCH Publishers, Germany (1989)zbMATHGoogle Scholar
  18. 18.
    Carrol, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circ. and Syst. I 38, 453 (1991)CrossRefGoogle Scholar
  19. 19.
    Nijmeijer, H., Berghuis, H.: On Lyapunov control of the Dufing equation. IEEE Trans. Circ. and Syst. 42, 473 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Wu, C.W., Yang, T., Chua, L.O.: On adaptive synchronization and control of nonlinear dynamical systems. Int. J. of Bifurcation and Chaos 6, 445 (1996)Google Scholar
  21. 21.
    Di Bernardo, M.: An adaptive approach to the control and synchronization of continuous-time systems. Int. J. of Bifurcation and Chaos 6, 557 (1996)zbMATHCrossRefGoogle Scholar
  22. 22.
    Alvarez-Ramirez, J., Femat, R., Gonzalez, J.: A time delay coordinates strategy to control a class of chaotic oscillators. Phys. Lett. A 221, 41 (1996)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Femat, R., Alvarez-Ramirez, J., Gonzalez, J.: A strategy to control chaos in nonlinear driven oscillators with least prior knowledge. Phys. Lett. A 224, 271 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Femat, R.: A control scheme for the motion of a magnet supported by type-II superconductor. Physica D 111, 347 (1998)zbMATHCrossRefGoogle Scholar
  25. 25.
    Aström, K.J., Witenmark, B.: Adaptive Control. Addison-Wesley, NY (1989)zbMATHGoogle Scholar
  26. 26.
    Ostojic, M.: Numerical approach to nonlinear control design. Trans. of the ASME 118, 332 (1996)zbMATHGoogle Scholar
  27. 27.
    Kincaid, D., Cheney, W.: Numerical Analysis: Mathematics and Scientific Computing. Brooks/Cole Publishing Co. (1991)Google Scholar
  28. 28.
    Nakamura, S.: Numerical Analysis and Graphic Visualization with MATLAB. Prentice Hall Inc., NY (1995)Google Scholar
  29. 29.
    González, J., Femat, R., Alvaez-Ramírez, J., Aguilar, R., Barron, M.: A discrete approach to the control and synchronization of a class of chaotic oscillators. IEEE Trans. on Circ. and Syst. I 46, 1139 (1999)zbMATHCrossRefGoogle Scholar
  30. 30.
    Wu, C.W., Chua, L.O.: Synchronization in an aray of linearly coupled dynamical systems. IEEE Trans. Circ. and Syst. I 42, 430–447 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Kapitaniak, T., Sekeita, M., Ogorzalek, M.: Montone synchronization of chaos. Int. J. of Bifur. and Chaos 6, 211–217 (1996)zbMATHCrossRefGoogle Scholar
  32. 32.
    Grassi, G., Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via scalar signal. IEEE Trans. Circ. and Syst. I 44, 1011–1014 (1997)CrossRefGoogle Scholar
  33. 33.
    Nijmeijer, H., Mareels, M.Y.: An observer looks at synchronization. IEEE Trans. Circ. and Syst. I 44, 882–890 (1997)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Xiaofeng, G., Lai, C.H.: On the synchronization of different chaotic oscillations Chaos. Solitons and Fractals 11, 1231–1235 (2000)zbMATHCrossRefGoogle Scholar
  35. 35.
    Femat, R., Alvarez-Ramírez, J.: Synchronization of a clas of strictly different oscillators. Phys. Letts. A 236, 307–313 (1997)zbMATHCrossRefGoogle Scholar
  36. 36.
    Bragard, J., Boccalletti, S.: Phys. Rev. E 62, 6346–6351 (2000)CrossRefGoogle Scholar
  37. 37.
    Brown, R., Kocarev, L.: A unifying framework of chaos synchronization for dynamical systems. Chaos 10, 344–349 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Femat, R., Solís-Perales, G.: On the chaos synchronization phenomena. Phys. Letts. A 262, 50–60 (1999)zbMATHCrossRefGoogle Scholar
  39. 39.
    Rulkov, N.F., Sushchik, M.M.: Robustness of synchronized chaotic oscillations. Int. J. of Bifur. and Chaos 7, 625–643 (1997)zbMATHCrossRefGoogle Scholar
  40. 40.
    Bazhenov, M., Huerta, R., Rabinovich, M.I., Sejnowski, T.: Cooperative behavior of a chain of synapticaly coupled chaotic neurons. Physica D 116, 392–400 (1998)zbMATHCrossRefGoogle Scholar
  41. 41.
    Aguirre, L.A., Billings, S.A.: Closed-loop suppresion of chaos in nonlinear driven oscillators. J. Nonlinear Sci. 5, 189–206 (1995)zbMATHCrossRefGoogle Scholar
  42. 42.
    Tass, P., Haken, H.: Synchronized oscillations in the visual cortex - a synergetics model. Biol. Cybern. 74, 31–39 (1996)zbMATHCrossRefGoogle Scholar
  43. 43.
    Huerta, R., Bazhenov, M., Rabinovich, M.I.: Cluster of synchronization and bistability in a latices of chaotic neurons. Europhys. Letts. 43, 719–724 (1998)CrossRefGoogle Scholar
  44. 44.
    Pyragas, K.: Transmission of signals via synchronization of chaotic time-delay systems. Int. J. of Bifur. and Chaos 8, 1839–1842 (1998)CrossRefGoogle Scholar
  45. 45.
    Short, K.M.: Steps toward unmasking secure communications. Int. J. of Bifur. and Chaos 4, 959–977 (1994)zbMATHCrossRefGoogle Scholar
  46. 46.
    Mosayebi, F., Qammar, H.K., Hartley, T.T.: Adaptive estimation and synchronization of chaotic systems. Phys. Letts. A 161, 255–262 (1991)CrossRefGoogle Scholar
  47. 47.
    Terman, D., Koppel, N., Bose, A.: Dynamics of two mutually coupled slow inhibitory neurons. Physica D 117, 241–275 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Lima, R., Pettini, M.: Suppresion of chaos by resonant parametric perturbations. Phys. Rev. A 41, 726–733 (1990)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Pecora, L.M., Carrol, T.L.: Synchronization in Chaotic Systems. Phys. Rev. Letts. 64, 821–824 (1990)CrossRefGoogle Scholar
  50. 50.
    Liu, Z., Lai, Y.C., Hoppensteadt, F.C.: Pase clustering and transition to phase synchronization in a large number of coupled nonlinear oscillators. Phys. Rev. E 63, 055201 (2000)CrossRefGoogle Scholar
  51. 51.
    di Bernardo, M.: An adaptive approach to the control and synchronization of continuous-time chaotic systems. Int. J. of Bifuc. and Chaos 6, 557 (1996)zbMATHCrossRefGoogle Scholar
  52. 52.
    Liu, Z., Shigang, C.: General method of synchronization. Phys. Rev. E 55, 199–204 (1997)CrossRefGoogle Scholar
  53. 53.
    Femat, R., Capistran-Tobías, J., Solís-Perales, G.: Laplace domain controllers for chaos control. Phys. Letts. A 252, 27–36 (1999)CrossRefGoogle Scholar
  54. 54.
    le Noble, W.J.: Highlights of organic chemistry. Marcel Dekker (1974)Google Scholar
  55. 55.
    Bowong, S.: Stability analysis for the synchronization of chaotic systems with different order: application to secure communications. Phys. Lett. A 326, 102–113 (2004)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ricardo Femat
    • Gualberto Solis-Perales

      There are no affiliations available

      Personalised recommendations