Advertisement

Robust Synchronization Via Geometrical Control: A General Framework

  • Ricardo Femat
  • Gualberto Solis-Perales
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 378)

Synchronization of Second-Order Driven Systems with Different Model

Particular interest has been devoted to study chaos synchronization of similar oscillators (see for instance [1], [2], [3], [4] and references therein). Such synchronization strategies have potential applications in several areas such as secure communication [5], [6], [7] biological oscillators and animal gait [8], [9]. It has been shown that two identical chaotic oscillators can be synchronized [10]. The general framework is developed toward synchronization of chaotic systems with different model. In seek of clarity and completeness in presentation, the second-order driven oscillators are considered for synchronization feedback.

Keywords

Chaotic System Synchronization Error Message Signal Slave System Chaos Synchronization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pecora, L.M., Carrol, T.S.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Wu, C.W., Yang, T., Chua, L.O.: On adaptive synchronization and control of nonlinear dynamical systems. Int. J. of Bifur. and Chaos 6(3), 455 (1996)zbMATHCrossRefGoogle Scholar
  3. 3.
    Kapitaniak, T., Sekeita, M., Ogorzalek, M.: Monotone synchronization of chaos. Int. J. of Bifur. and Chaos 6(1), 211 (1996)zbMATHCrossRefGoogle Scholar
  4. 4.
    Wu, C.W., Chua, L.O.: Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits and Systems I 42, 430 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    di Bernardo, M.: An adaptive approach to the control and synchronization of continuous-time chaotic systems. Int. J. of Bifur. and Chaos 6(3), 557 (1996)zbMATHCrossRefGoogle Scholar
  6. 6.
    Parlitz, U., Kocarev, L.: Using Surrogate Data Analysis for Unmasking Chaotic Communication Systems. Int. J. of Bifur. and Chaos 7(2), 407 (1996)CrossRefGoogle Scholar
  7. 7.
    Perez, G., Cerdeira, H.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970 (1995)CrossRefGoogle Scholar
  8. 8.
    Collins, J.J., Stewart, I.N.: Hexapodal gaits and coupled nonlinear oscillators model. Biological Cybernetics 68, 287 (1993)zbMATHCrossRefGoogle Scholar
  9. 9.
    Collins, J.J., Stewart, I.N.: Coupled nonlinear oscillators and the symmetries of animal gaits. J. of Nonlinear Science 3, 349–392 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kozlov, A.K., Shalfeev, V.D., Chua, L.O.: Exact synchronization of mismatched chaotic systems. Int. J. of Bifurc. and Chaos 6, 569 (1996)zbMATHCrossRefGoogle Scholar
  11. 11.
    Mossayebi, F., Qammar, H.K., Hartley, T.T.: Adaptive estimation and synchronization of chaotic systems. Phys. Lett. A 161, 255 (1991)CrossRefGoogle Scholar
  12. 12.
    Chua, L.O., Yang, T., Zhong, G.C., Wu, C.W.: Adaptive synchornization of Chua oscillator. Int. J. of Bifur. and Chaos 6, 189 (1996)CrossRefGoogle Scholar
  13. 13.
    Woafo, P., Chedjou, J.C., Fostin, H.B.: Dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing oscillator. Phys. Rev. E 54(6), 5929–5934 (1996)CrossRefGoogle Scholar
  14. 14.
    Femat, R., Alvarez-Ramírez, J., González, J.: A strategy to control chaos in nonlinear driven oscillators with least prior knowledge. Phys. Lett. A 224, 271 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Femat, R., Alvarez-Ramírez, J., Castillo-Toledo, B., González, J.: On robust chaos suppression in a class of nondriven oscillators: Application to Chua’s Circuit. IEEE Circuits and Syst. I 46, 1150 (1999)zbMATHCrossRefGoogle Scholar
  16. 16.
    Nijmeijer, H., van der Shaft, A.J.: Nonlinear Dyanamical Systems. Springer, Berlin (1990)Google Scholar
  17. 17.
    Isidori, A.: Nonlinear control systems. Springer, NY (1989)zbMATHGoogle Scholar
  18. 18.
    Herman, R., Krener, A.J.: Nonlinear controllability and observability. IEEE Trans. on Automatic Control AC-22, 728 (1977)CrossRefGoogle Scholar
  19. 19.
    Esfandiari, F., Khalil, H.K.: Output feedback stabilization of fully linearizable systems. Int. J. of Control 56, 1007 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sussman, H.J., Kokotovic, P.V.: The peaking phenomenon and the global stabilization of nonlinear systems. IEEE Trans. on Automatic Control AC-36, 424 (1991)CrossRefGoogle Scholar
  21. 21.
    Bazhenov, M., Huerta, R., Rabinovich, M.I., Sejnowski, T.: Cooperative behavior of a chain of synaptically coupled chaotic neurons. Physica D 116, 392 (1998)zbMATHCrossRefGoogle Scholar
  22. 22.
    Wu, C.W., Chua, L.O.: A simple way to synchronize chaotic systems with application to chaotic secure communications. Int. J. of Bifur. and Chaos 3, 1619 (1993)zbMATHCrossRefGoogle Scholar
  23. 23.
    Short, K.M.: Steps toward unmasking secure communication. Int. J. of Bifur. and Chaos 4, 959 (1994)zbMATHCrossRefGoogle Scholar
  24. 24.
    Niels, H., Holstein, R., Kay, P.Y., Sosnovttseva, O.V., Mosekilde, E.: Synchronization phenomena in nephron-nephron interactions. Chaos 11, 417 (2001)CrossRefGoogle Scholar
  25. 25.
    Giugliano, M., Bove, M., Grattarola, M.: Insulin release at the molecular level: Metabolic-electrophysiological modeling of the pancreatic beta-cells. IEEE Trans. on Biom. Engineering 47, 611 (2000)CrossRefGoogle Scholar
  26. 26.
    Femat, R., Jauregui-Ortiz, R., Solís-Perales, G.: A chaos-based communication scheme via robust asymptotic feedback. IEEE Trans. on Circuits and Systems I 48, 1161 (2001)CrossRefGoogle Scholar
  27. 27.
    Mettin, R., Lauterborn, W., Hubler, A.: A Scheeline, Parametric entrainment control of chaotic system. Phys. Rev. E 51, 4065 (1995)CrossRefGoogle Scholar
  28. 28.
    Kokarev, L., Parlitz, U., Hu, B.: Lie derivatives and dynamical systems. Chaos, Solitons and Fractals 9, 1359 (1998)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Aeyels, D., Sepulchre, R.: Stability for dynamical systems with first integrals: a topological criterion. Syst. & Contr. Lett. 19, 461 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Ushida, A., Nishio, Y.: Spatio-temporal chaos in simple coupled chaotic circuits. IEEE Trans. On Circ. and Syst. I 42, 678 (1995)CrossRefGoogle Scholar
  31. 31.
    Shalfeev, V.D., Osipov, G.V.: The evolution of spatio-temporal disorder in a chain of unidirectionally-coupled Chua’s circuits. IEEE Trans. on Circ. and Syst. I 42, 687 (1995)CrossRefGoogle Scholar
  32. 32.
    Huerta, R., Bazhenov, M., Rabinovich, M.I.: Clusters of synchronization and bistability in lattices of chaotic neurons. Europhysics Letters 43, 719 (1998)CrossRefGoogle Scholar
  33. 33.
    Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronization chaos with applications to communications. Phys. Rev. Lett. 71, 65 (1993)CrossRefGoogle Scholar
  34. 34.
    Kocarev, J.L., Parlitz, U.: General approach for chaotic synchronization with application sto communication. Phys. Rev. Lett. 74, 5028 (1995)CrossRefGoogle Scholar
  35. 35.
    Grassi, G., Mascolo, S.: A system theory approach for designing cryptosystems based on hyperchaos. IEEE Trans. Circuits and Systems I 46, 1135 (1999)zbMATHCrossRefGoogle Scholar
  36. 36.
    Nijmeijer, H., Mareels, M.Y.: An observer looks at synchronization. IEEE Trans. Circuits and Systems I 44, 882 (1997)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Liao, T.-L., Huang, N.-S.: An observer-based approach for chaotic synchronization with application to secure communication. IEEE Trans. Circuits and Systems I 46, 1144 (1999)zbMATHCrossRefGoogle Scholar
  38. 38.
    Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.S. (eds.). Lectures Notes in Mathematics, vol. 898, p. 361. Springer, Berlin (1980)Google Scholar
  39. 39.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Chen, G., Dong, X.: From chaos to order: Perspectives and methodologies in controlling chaotic nonlinear dynamical systems. Int. J. of Bifurc. and Chaos 3, 1363 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Jackson, E.A.: Control of dynamics flow with attractors. Phys. Rev. A 44, 4839 (1991)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Ogorzalek, M.J.: Taming chaos-Part I: Control. IEEE Trans. Circuits and Systems I 40, 700 (1993)zbMATHCrossRefGoogle Scholar
  43. 43.
    Teel, A., Praly, L.: Tools for semiglobal stabilization by partial state and output feedback. SIAM J. of Contr. Opt. 33, 1443 (1991)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Femat, R., Solís-Perales, G.: On the chaos synchronization phenomena. Phys. Lett. A 262, 50 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Khargonekar, P.P., Patersen, I.R., Zhou, K.: Robust stabilization of uncertain linear systems: Quadratic stabilizability and H  ∞  control theory. IEEE Trans. Automatic Control AC-19, 356 (1990)CrossRefGoogle Scholar
  46. 46.
    Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice-Hall, NJ (1998)Google Scholar
  47. 47.
    Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155 (1979)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ricardo Femat
    • Gualberto Solis-Perales

      There are no affiliations available

      Personalised recommendations