Skip to main content

Robust Synchronization Via Geometrical Control: A General Framework

  • Chapter
Robust Synchronization of Chaotic Systems via Feedback

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 378))

  • 588 Accesses

Synchronization of Second-Order Driven Systems with Different Model

Particular interest has been devoted to study chaos synchronization of similar oscillators (see for instance [1], [2], [3], [4] and references therein). Such synchronization strategies have potential applications in several areas such as secure communication [5], [6], [7] biological oscillators and animal gait [8], [9]. It has been shown that two identical chaotic oscillators can be synchronized [10]. The general framework is developed toward synchronization of chaotic systems with different model. In seek of clarity and completeness in presentation, the second-order driven oscillators are considered for synchronization feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pecora, L.M., Carrol, T.S.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)

    Article  MathSciNet  Google Scholar 

  2. Wu, C.W., Yang, T., Chua, L.O.: On adaptive synchronization and control of nonlinear dynamical systems. Int. J. of Bifur. and Chaos 6(3), 455 (1996)

    Article  MATH  Google Scholar 

  3. Kapitaniak, T., Sekeita, M., Ogorzalek, M.: Monotone synchronization of chaos. Int. J. of Bifur. and Chaos 6(1), 211 (1996)

    Article  MATH  Google Scholar 

  4. Wu, C.W., Chua, L.O.: Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits and Systems I 42, 430 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. di Bernardo, M.: An adaptive approach to the control and synchronization of continuous-time chaotic systems. Int. J. of Bifur. and Chaos 6(3), 557 (1996)

    Article  MATH  Google Scholar 

  6. Parlitz, U., Kocarev, L.: Using Surrogate Data Analysis for Unmasking Chaotic Communication Systems. Int. J. of Bifur. and Chaos 7(2), 407 (1996)

    Article  Google Scholar 

  7. Perez, G., Cerdeira, H.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970 (1995)

    Article  Google Scholar 

  8. Collins, J.J., Stewart, I.N.: Hexapodal gaits and coupled nonlinear oscillators model. Biological Cybernetics 68, 287 (1993)

    Article  MATH  Google Scholar 

  9. Collins, J.J., Stewart, I.N.: Coupled nonlinear oscillators and the symmetries of animal gaits. J. of Nonlinear Science 3, 349–392 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kozlov, A.K., Shalfeev, V.D., Chua, L.O.: Exact synchronization of mismatched chaotic systems. Int. J. of Bifurc. and Chaos 6, 569 (1996)

    Article  MATH  Google Scholar 

  11. Mossayebi, F., Qammar, H.K., Hartley, T.T.: Adaptive estimation and synchronization of chaotic systems. Phys. Lett. A 161, 255 (1991)

    Article  Google Scholar 

  12. Chua, L.O., Yang, T., Zhong, G.C., Wu, C.W.: Adaptive synchornization of Chua oscillator. Int. J. of Bifur. and Chaos 6, 189 (1996)

    Article  Google Scholar 

  13. Woafo, P., Chedjou, J.C., Fostin, H.B.: Dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing oscillator. Phys. Rev. E 54(6), 5929–5934 (1996)

    Article  Google Scholar 

  14. Femat, R., Alvarez-Ramírez, J., González, J.: A strategy to control chaos in nonlinear driven oscillators with least prior knowledge. Phys. Lett. A 224, 271 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Femat, R., Alvarez-Ramírez, J., Castillo-Toledo, B., González, J.: On robust chaos suppression in a class of nondriven oscillators: Application to Chua’s Circuit. IEEE Circuits and Syst. I 46, 1150 (1999)

    Article  MATH  Google Scholar 

  16. Nijmeijer, H., van der Shaft, A.J.: Nonlinear Dyanamical Systems. Springer, Berlin (1990)

    Google Scholar 

  17. Isidori, A.: Nonlinear control systems. Springer, NY (1989)

    MATH  Google Scholar 

  18. Herman, R., Krener, A.J.: Nonlinear controllability and observability. IEEE Trans. on Automatic Control AC-22, 728 (1977)

    Article  Google Scholar 

  19. Esfandiari, F., Khalil, H.K.: Output feedback stabilization of fully linearizable systems. Int. J. of Control 56, 1007 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sussman, H.J., Kokotovic, P.V.: The peaking phenomenon and the global stabilization of nonlinear systems. IEEE Trans. on Automatic Control AC-36, 424 (1991)

    Article  Google Scholar 

  21. Bazhenov, M., Huerta, R., Rabinovich, M.I., Sejnowski, T.: Cooperative behavior of a chain of synaptically coupled chaotic neurons. Physica D 116, 392 (1998)

    Article  MATH  Google Scholar 

  22. Wu, C.W., Chua, L.O.: A simple way to synchronize chaotic systems with application to chaotic secure communications. Int. J. of Bifur. and Chaos 3, 1619 (1993)

    Article  MATH  Google Scholar 

  23. Short, K.M.: Steps toward unmasking secure communication. Int. J. of Bifur. and Chaos 4, 959 (1994)

    Article  MATH  Google Scholar 

  24. Niels, H., Holstein, R., Kay, P.Y., Sosnovttseva, O.V., Mosekilde, E.: Synchronization phenomena in nephron-nephron interactions. Chaos 11, 417 (2001)

    Article  Google Scholar 

  25. Giugliano, M., Bove, M., Grattarola, M.: Insulin release at the molecular level: Metabolic-electrophysiological modeling of the pancreatic beta-cells. IEEE Trans. on Biom. Engineering 47, 611 (2000)

    Article  Google Scholar 

  26. Femat, R., Jauregui-Ortiz, R., Solís-Perales, G.: A chaos-based communication scheme via robust asymptotic feedback. IEEE Trans. on Circuits and Systems I 48, 1161 (2001)

    Article  Google Scholar 

  27. Mettin, R., Lauterborn, W., Hubler, A.: A Scheeline, Parametric entrainment control of chaotic system. Phys. Rev. E 51, 4065 (1995)

    Article  Google Scholar 

  28. Kokarev, L., Parlitz, U., Hu, B.: Lie derivatives and dynamical systems. Chaos, Solitons and Fractals 9, 1359 (1998)

    Article  MathSciNet  Google Scholar 

  29. Aeyels, D., Sepulchre, R.: Stability for dynamical systems with first integrals: a topological criterion. Syst. & Contr. Lett. 19, 461 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ushida, A., Nishio, Y.: Spatio-temporal chaos in simple coupled chaotic circuits. IEEE Trans. On Circ. and Syst. I 42, 678 (1995)

    Article  Google Scholar 

  31. Shalfeev, V.D., Osipov, G.V.: The evolution of spatio-temporal disorder in a chain of unidirectionally-coupled Chua’s circuits. IEEE Trans. on Circ. and Syst. I 42, 687 (1995)

    Article  Google Scholar 

  32. Huerta, R., Bazhenov, M., Rabinovich, M.I.: Clusters of synchronization and bistability in lattices of chaotic neurons. Europhysics Letters 43, 719 (1998)

    Article  Google Scholar 

  33. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronization chaos with applications to communications. Phys. Rev. Lett. 71, 65 (1993)

    Article  Google Scholar 

  34. Kocarev, J.L., Parlitz, U.: General approach for chaotic synchronization with application sto communication. Phys. Rev. Lett. 74, 5028 (1995)

    Article  Google Scholar 

  35. Grassi, G., Mascolo, S.: A system theory approach for designing cryptosystems based on hyperchaos. IEEE Trans. Circuits and Systems I 46, 1135 (1999)

    Article  MATH  Google Scholar 

  36. Nijmeijer, H., Mareels, M.Y.: An observer looks at synchronization. IEEE Trans. Circuits and Systems I 44, 882 (1997)

    Article  MathSciNet  Google Scholar 

  37. Liao, T.-L., Huang, N.-S.: An observer-based approach for chaotic synchronization with application to secure communication. IEEE Trans. Circuits and Systems I 46, 1144 (1999)

    Article  MATH  Google Scholar 

  38. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.S. (eds.). Lectures Notes in Mathematics, vol. 898, p. 361. Springer, Berlin (1980)

    Google Scholar 

  39. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  40. Chen, G., Dong, X.: From chaos to order: Perspectives and methodologies in controlling chaotic nonlinear dynamical systems. Int. J. of Bifurc. and Chaos 3, 1363 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  41. Jackson, E.A.: Control of dynamics flow with attractors. Phys. Rev. A 44, 4839 (1991)

    Article  MathSciNet  Google Scholar 

  42. Ogorzalek, M.J.: Taming chaos-Part I: Control. IEEE Trans. Circuits and Systems I 40, 700 (1993)

    Article  MATH  Google Scholar 

  43. Teel, A., Praly, L.: Tools for semiglobal stabilization by partial state and output feedback. SIAM J. of Contr. Opt. 33, 1443 (1991)

    Article  MathSciNet  Google Scholar 

  44. Femat, R., Solís-Perales, G.: On the chaos synchronization phenomena. Phys. Lett. A 262, 50 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Khargonekar, P.P., Patersen, I.R., Zhou, K.: Robust stabilization of uncertain linear systems: Quadratic stabilizability and H  ∞  control theory. IEEE Trans. Automatic Control AC-19, 356 (1990)

    Article  Google Scholar 

  46. Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice-Hall, NJ (1998)

    Google Scholar 

  47. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155 (1979)

    Article  MathSciNet  Google Scholar 

  48. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980 (1995)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Femat, R., Solis-Perales, G. (2008). Robust Synchronization Via Geometrical Control: A General Framework. In: Robust Synchronization of Chaotic Systems via Feedback. Lecture Notes in Control and Information Sciences, vol 378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69307-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69307-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69306-2

  • Online ISBN: 978-3-540-69307-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics