Advertisement

Introduction to Chaos Control: An Interdisciplinary Problem

  • Ricardo Femat
  • Gualberto Solis-Perales
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 378)

Chaos Control Is Suppression or Synchronization

The foundational for chaos control problem is scientific as well as technological. In regard science, on the one hand, chaos control has two important contributions: (i) The controlled chaotic systems has allowed to understand that structured disorder and its entropy/information relationship extend the concept of determinism [1], [2] and (ii) departing from chaotification (inverse action of the chaos suppression) some questions have been opened on phenomena of the feedback dynamical systems [3]. Moreover, the chaos control impacts biomedical, life and engineering sciences; for example, it can be extended to control pathological rhythm in heart [4]. Now, regarding technological applications, the controlled chaotic systemsare important because of a desired frequency response can be induced. Nowadays, the scientific community has identified two problems in chaos control: suppression and synchronization. Among others, we can mention studies in physical devices (e.g., telescopes or lasers), biology/ecology (e.g., population dynamics or biodynamics) or biomedical systems (e.g., heart rhythm or brain activity). Thus, for instance, controlled current-modulation can be entered as excitation from a nonlinear circuit into semiconductors lasers by feeding back the laser frequency response (see Figure 1 in [5]). Henceforth, scientific community has taken possession of the challenge of exploring control techniques such that (i) a family of driving force can command classes of chaotic systems [6], (ii) the synthesis of mathematical expressions for the control force accounts the frequency response [7], and (iii) energy requirements by the control force are accounted (for example to avoid saturation or deterioration in control devices) [8]. In addition, the mathematical models of the driving force is desired to be simple and easy to implement experimentally. A simple form is the linear models of driving forces; which can be expressed in the frequency (Laplace) or time domain and they have been already used to suppress chaotic behavior [7], [9].

Keywords

Chaotic System Control Force Chaotic Oscillator Generalize Synchronization Chaos Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hayles, N.K.: Chaos bound. Orderly disorder in conterporary literature and science. Cornel Univ. Press, USA (1990)Google Scholar
  2. 2.
    Bricmont, J.: Science of Chaos or chaos of science? In: Gross, P.R., Levitt, N., Lewis, M.W. (eds.) The flight from science and reason, USA. Annals of the New York Academy of Sciences, vol. 775, pp. 131–175 (1998)Google Scholar
  3. 3.
    Lu, J., Yu, X., Chen, G.: Generating chaotic atractors with multiple merged basins of atractions: A switching piecewise-linear control approach. IEEE Trans. Circ. Syst. I 50, 198–207 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Christini, D.J., Collins, J.J.: Using chaos control and tracking to suppres a pathological nonchaotic rhythm in a cardiac model. Phys. Rev. E 53, 49–52 (1996)CrossRefGoogle Scholar
  5. 5.
    Vasilév, P.P., White, I.H., Gowar, J.: Fast phenomena in semiconductor lassers. Rep. Prog. Phys. 63, 1997–2042 (2000)CrossRefGoogle Scholar
  6. 6.
    Booker, S.M.: A family of optimal excitation for inducing complex dynamics in planar dynamical systems. Nonlinearity 13, 145–163 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Femat, R., Capistrán-Tobias, D., Solís-Perales, G.: Laplace domain controlers for chaos control. Phys. Letts A. 252, 27–36 (1999)CrossRefGoogle Scholar
  8. 8.
    Sarasola, C., Torrealdea, F.J., d’Anjou, A., Graña, M.: Cost of synchronizing different chaotic systems. Math. Comp. Simulation 58, 309–327 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Puebla, H., Alvarez-Ramirez, J., Cervantes, I.: A simple tracking control for Chuaś circuit. IEEE Trans. Circ. and Syt. I 50, 280–284 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Aguirre, L.A., Billings, S.A.: Closed-loop suppresion of chaos in nonlinear driven oscillators. J. Nonlinear Sci. 5, 189–206 (1995)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ott, E., Grebogi, C., Yorke, J.A.: Controling chaos. Phys. Rev. Letts 64, 1196–1199 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Alvarez-Ramirez, J., Garrido, R., Femat, R.: Control of systems with friction. Phys. Rev. E 51, 6235–6238 (1995)CrossRefGoogle Scholar
  13. 13.
    Pyragas, K.: Continuous control of chaos by self-controling feedback. Phys. Letts. A 170, 421–428 (1992)CrossRefGoogle Scholar
  14. 14.
    Cazelles, B., Boujdjema, G., Chau, N.P.: Adaptive control of systems in a noisy environment. Phys. Lett. A 196, 326–330 (1995)CrossRefGoogle Scholar
  15. 15.
    Alvarez-Ramirez, J., Femat, R., Gonzalez, J.: A time delay coordinates strategy to control a class of chaotic oscillators. Phys. Letts. A 211, 41–45 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Femat, R., Solis-Perales, G.: On the chaos synchronization phenomena. Phys. Letts. A 262, 50 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Brown, R., Kocarev, L.: An unifying definition of synchronization for dynamical systems. Chaos 10, 344 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kocarev, L., Parlitz, U., Brown, R.: Robust synchronization of chaotic systems. Phys. Rev. E 61, 3716 (2000)CrossRefGoogle Scholar
  19. 19.
    Josic, K.: Synchronization of chaotic systems and invariant manifolds. Nonlinearity 13, 1321 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Martens, M., Pécou, E., Tresser, C., Worfolk, P.: On the geometry of master-slave synchronization. Chaos 12, 316 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Boccaleti, S., Pecora, L.M., Pelaez, A.: Unifying framework for synchronization of coupled dynamical systems. Phys. Rev. E 63, 066219-1 (2001)Google Scholar
  22. 22.
    Boccaleti, S., Valladares, D.L., Kurths, J., Maza, D., Mancini, H.: Synchronization of chaotic structuraly nonequivalent systems. Phys. Rev. E 61, 3712 (2000)CrossRefGoogle Scholar
  23. 23.
    Xiaofeng, G., Lai, C.H.: On synchronization of different chaotic oscillators. Chaos, Solitons and Fractals 11, 1231 (2000)zbMATHCrossRefGoogle Scholar
  24. 24.
    Femat, R., Solís-Perales, G.: Synchronization of chaotic systems with different order. Phys. Rev. E 65, 036226-1 (2002)Google Scholar
  25. 25.
    Femat, R., Jauregui-Ortiz, R., Solís-Perales, G.: A chaos-based communicaiton scheme via robust asymptotic feedback. IEEE Circ. Syst. I 48, 1161 (2001)CrossRefGoogle Scholar
  26. 26.
    Boccaletti, S., Bragard, J., Arecchi, F.T., Mancini, H.: Synchronization in nonidentical extended systems. Phys. Rev. Letts. 83, 539 (1999)CrossRefGoogle Scholar
  27. 27.
    Femat, R., Alvarez-Ramírez, J.: Synchronization of two strictly different chaotic oscillators. Phys. Letts. A 236 (1997)Google Scholar
  28. 28.
    Yang, T., Shao, H.H.: Synchronizing chaotic dynamics with uncertainties based on sliding mode control design. Phys. Rev. E 65, 046210-1 (2002)Google Scholar
  29. 29.
    Ho, M.C., Hung, Y.C.: Synchronization of two different systems by using generalized active control. Phys. Letts. A 301, 424 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Feki, M.: Observer-based exact synchronization of ideal and mismatched chaotic systems. Phys. Letts. A 309, 53 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Sprott, J.C.: A new class of chaotic circuits. Phys. Letts. A 266, 19 (2000)CrossRefGoogle Scholar
  32. 32.
    Malasoma, J.M.: A new class of minimal chaotic flows. Phys. Letts. A 305, 52 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Femat, R.: An extension to chaos control via Lie derivatives: Fully linearizable systems. Chaos 12, 1207 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ricardo Femat
    • Gualberto Solis-Perales

      There are no affiliations available

      Personalised recommendations